Shih-Min Yang
Shih-Min Yang Befattning: Doktorand Organisation: Institutionen för naturvetenskap och teknikE-post: c2hpaC1taW4ueWFuZztvcnUuc2U=
Telefon: Telefonnummer saknas
Rum: T1210

Om Shih-Min Yang
I am a Ph.D. student in computer science at Örebro University in Sweden. I am working on the DARKO EU project and affiliated with Wallenberg AI, Autonomous Systems and Software Program (WASP).
My research focuses on improving learning efficiency in reinforcement learning, with a practical application in complex robotic manipulation tasks. I have previously submitted a paper on using reinforcement learning to acquire extrinsic dexterity skills for flipping and grasping objects. Currently, my ongoing work involves developing a paper that combines hierarchical reinforcement learning and curiosity-driven exploration to address challenges related to sparse reward issues.
Forskningsprojekt
Pågående projekt
Forskargrupper
Publikationer
Konferensbidrag
- Shih-Min, Y. , Magnusson, M. , Stork, J. A. & Stoyanov, T. (2024). Learning Extrinsic Dexterity with Parameterized Manipulation Primitives. I: 2024 IEEE International Conference on Robotics and Automation (ICRA). Konferensbidrag vid IEEE International Conference on Robotics and Automation (ICRA 2024), Yokohama, Japan, May 13-17, 2024. (ss. 5404-5410). IEEE. [BibTeX]