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Abstract

This paper examines optimal portfolio selection using quantile-based risk measures such as Value-
at-Risk (VaR) and Conditional Value-at-Risk (CVaR). We address the case of a singular covariance
matrix of asset returns, which leads to an optimization problem with infinitely many solutions. An
analytical form for a general solution is derived, along with a unique solution that minimizes the
L2-norm. We also show that the general solution reduces to the standard optimal portfolio for VaR
and CVaR when the covariance matrix is non-singular.

Keywords: Minimum VaR portfolio, Minimum CVaR portfolio, Singular covariance matrix, Linear ill-
posed problems

1 Introduction

Modern portfolio theory offers an intelligent approach to making investment decisions based on mathe-
matical concepts. In the pioneering work of [15], the basic concepts were introduced through the mean-
variance framework. In this framework, the investor allocates funds based on the trade-off between the
portfolio’s return and risk. The optimal portfolio is selected by maximizing the expected portfolio return
subject to achieving a specified level of portfolio risk or, equivalently, by minimizing portfolio risk subject
to achieving a specified level of expected portfolio return. When assessing portfolio risk, various mea-
sures can be considered. The most basic portfolio risk measure is variance, however, this risk measure
is often deemed inappropriate as it considers two-sided risk [14]. Recently, quantile-based risk measures,
such as Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), have gained popularity and are, for
instance, recommended by the Basel Committee on Banking Supervision [1, 2]. Therefore, this paper
focuses on optimal portfolios obtained by minimizing VaR and CVaR.

Investment decisions and the composition of the investment portfolio depends on the expected returns
and risk of different assets and, crucially, the correlations between the returns of the assets. These,
in turn, are estimated from financial market data and used as input when investment strategies are
formulated and investment decisions taken. The most common estimators for the covariance matrix are
the sample estimator and the maximum likelihood estimator (see, e.g., [3, 4, 12,13,16]). Both estimators
are positive definite when there are more observations in the data than the number of assets in the
investment portfolio. However, having fewer observations than the size of the portfolio leads to singular
estimators of the covariance matrix. Another source of singularity for the covariance matrix can arise
from multicollinearity, especially in investment portfolios with a large number of assets. This is where
our contribution comes in.

We contribute to the existing literature by considering minimum VaR and CVaR optimal portfolios
when the covariance matrix of asset returns is singular. Since the covariance matrix is singular, the
optimization problem has an infinite number of solutions. Therefore, following a similar philosophy as
in [10, 11, 17], we present both a general solution and a unique solution with the smallest L2-norm. It is
worth noting that the solution with the smallest L2-norm has gained attention in the statistical analysis
of optimal portfolio weights and related quantities (see, e.g., [3, 5–9]).
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The rest of the paper is organized as follows. Section 2 introduces the concept of minimum VaR and
CVaR optimal portfolios. After that, Section 3 presents the main contribution of the paper, focusing on
the case of a singular covariance matrix.

2 Minimum VaR and CVAR optimal portfolios

Let xt be a p-dimensional vector of asset returns at time point t, t = 1, . . . , N , following a p-dimensional
Gaussian distribution with mean vector µ and covariance matrix Σ, i.e. xt ∼ Np(µ,Σ). Let also the
second moment of xt be finite, and assume rank(Σ) = r ≤ p, meaning that the covariance matrix Σ may
be singular. Furthermore, let w be a p-dimensional vector of portfolio weights such that 1⊤w = 1, where
1 denotes the p-dimensional vector of ones.

[1,2] used Value-at-Risk (VaR) as a risk measure to find the optimal portfolio weights w through the
following optimization problem

V aRα → min s.t. 1⊤w = 1, (1)

where the VaR at the confidence level α ∈ (1/2, 1) is defined as follows

P (Xw < −V aRα) = 1− α (2)

with Xw = x⊤w. Assuming that x ∼ Np(µ,Σ), it holds that

V aRα(Xw) = −w⊤µ− z1−α

√
w⊤Σw (3)

with zβ = Φ−1(β) which corresponds to β-quantile of the standard Gaussian distribution. Therefore, if
Σ is positive definite, the solution to (1) is expressed as follows

wV aR = wGMV +

√
VGMV√
z21−α − s

Rµ (4)

with

wGMV =
Σ−11

1⊤Σ−11
, RGMV =

µ⊤Σ−11

1⊤Σ−11
, VGMV =

1

1⊤Σ−11
, (5)

where wGMV , RGMV , and VGMV are the weights, expected return and variance of the global minimum
variance (GMV) portfolio, respectively, and

s = µ⊤Rµ with R = Σ−1 − Σ−111⊤Σ−1

1⊤Σ−11
(6)

is a slope parameter of the efficient frontier.
Following [1, 2], another popular measure of risk is the Conditional Value-at-Risk (CVaR), which is

defined at the confidence level α ∈ (1/2, 1) as

CV aRα = E (−Xw| −Xw > V aRα) . (7)

Considering x ∼ Np(µ,Σ), we get that

CV aRα(Xw) = −w⊤µ− κ1−α

√
w⊤Σw, (8)

with

κβ =
−
∫ −zβ
−∞ xϕ(x)dx

1− β
=

exp
(
−z2β/2

)
√
2π(1− β)

, (9)

where ϕ(·) stands for the density function of the standard Gaussian distribution. Hence, the minimum
CVaR optimal portfolio weights are obtained as a solution to the following optimization problem

CV aRα → min s.t. 1⊤w = 1 (10)
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and, in the case of the positive definite Σ, are expressed as follows

wCV aR = wGMV +

√
VGMV√
κ2
1−α − s

Rµ. (11)

The optimal portfolio weights wV aR and wCV aR in (4) and (11), respectively, are obtained under
the assumption of a positive definite covariance matrix Σ. In what follows, we consider the case of the
singular covariance matrix Σ and, in this context, deliver the corresponding expressions for wV aR and
wCV aR.

3 Main results

Assuming Gaussianity, the optimization problems for obtaining both the VaR and CVaR optimal port-
folios in (1) and (10), respectively, can be generalized as follows

min
w∈Rp

− µ⊤w + γ
√
w⊤Σw

s.t. 1⊤w = 1,
(12)

where γ ∈ R is a given constant and Σ has rank r < p. Let us note that for α ∈ (1/2, 1) we have
γ = −z1−α > 0 in the VaR optimization problem, and γ = −κ1−α < 0 in the CVaR case. Through the
SVD the matrix Σ can be represented as

Σ = USU⊤, where S =

[
D 0
0 0

]
,U = [U1, U2] . (13)

Here, D is (r × r) diagonal matrix, and U1 and U2 are (p × r) and p × (p − r) orthonormal matrices.
Then

Σ = U1DU⊤
1 (14)

and the pseudo-inverse of Σ is given as

Σ† = U1D
−1U⊤

1 . (15)

Theorem 1. A general solution to the optimization problem in (12) with the rank deficient matrix Σ,
represented with the help of the SVD in (13) - (14), is given as

w =
(1− 1⊤U2y2)

1⊤Σ†(µ− λ11)
Σ†(µ− λ11) +U2y2. (16)

Here, y2 ∈ Rp−r is a vector of free variables and λ1 ∈ R is given as

λ1 =

{
λ+
1 , γ(1− 1⊤U2y2) < 0

λ−
1 , γ(1− 1⊤U2y2) ≥ 0

, (17)

with

λ±
1 =

b±
√
b2 − ac+ aγ2

a
, (18)

where
a = 1⊤Σ†1, b = µ⊤Σ†1, and c = µ⊤Σ†µ. (19)

Proof. To solve the optimization problem in (12), we introduce an auxiliary variable v =
√
w⊤Σw ≥ 0.

Then the Lagranian function for (12) is given as

L = −µ⊤w + γv + λ1(1
⊤w − 1) + λv(w

⊤Σw − v2), (20)

3



where λ1, λv are Lagrange parameters. In order to obtain the minimal solution the KKT-conditions must
be satisfied, i.e.,

∂L

∂w
= −µ+ λ11+ 2λvΣw = 0 (21)

∂L

∂v
= γ − 2λvv = 0 (22)

1⊤w = 1 (23)

w⊤Σw = v2. (24)

Introduce y = U⊤w, where U is given by the SVD decomposition of Σ in (14). Consequently,

w = Uy = U1y1 +U2y2, y =

(
y1

y2

)
, y1 ∈ Rr,y2 ∈ Rp−r. (25)

The the KKT-conditions (21)-(24) can then we rewritten in terms of y1 and y2 as

−µ+ λ11+ 2λvU1Dy1 = 0 (26)

γ − 2λvv = 0 (27)

1⊤U1y1 + 1⊤U2y2 = 1 (28)

y⊤
1 Dy1 = v2. (29)

Multiplying (26) from the left with D−1U⊤
1 yields

y1 =
1

2λv
D−1U⊤

1 (µ− λ11). (30)

We plug this expression into (29) and obtain

(µ− λ11)
⊤U1D

−1U⊤
1 (µ− λ11) = 4λ2

vv
2.

We next use (27) and the expression for the pseudo-inverse Σ† in (15) to obtain

(µ− λ11)
⊤Σ†(µ− λ11) = γ2. (31)

Solving (31) for λ1 results in (18). Assuming λ1 given by (18), we plug (30) into (28) to obtain the
expression for λv. We have

1

2λv
=

(1− 1⊤U2y2)

1⊤Σ†(µ− λ11)
=

(1− 1⊤U2y2)

∓
√

b2 − ac+ aγ2
. (32)

Since v = γ/(2λv) ≥ 0, see (27), then the expression above must be of a certain sign. This can be
guaranteed by selecting λ1 = λ+

1 if γ(1− 1⊤U2y2) < 0 and λ1 = λ−
1 if γ(1− 1⊤U2y2) ≥ 0, see (17).

Combining (32) with the expression for y1 in (30) yields

U1y1 =
(1− 1⊤U2y2)

1⊤Σ†(µ− λ11)
Σ†(µ− λ11). (33)

Finally, we obtain (16) by using (25), which completes the proof.

Corollary 1. When Σ has full rank, w in (16) are the same as wV aR and wCV aR in (4) and (11),
respectively.

Proof. For the full rank case, (16) in Theorem 1 we have

w =
1

1⊤Σ−1(µ− λ11)
Σ−1(µ− λ11).

where a, b, c, and γ are defined in Theorem 1. Using that

1⊤Σ−1µ− λ11
⊤Σ−11 = b− aλ1 = b− b+

√
b2 − ac+ aγ2 =

√
b2 − ac+ aγ2
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we get

w =
1√

b2 − ac+ aγ2
Σ−1(µ− λ11) =

1√
b2 − ac+ aγ2

Σ−1µ− λ1√
b2 − ac+ aγ2

1)

or since

λ1

1⊤Σ†(µ− λ11)
=

b±
√

b2−ac+aγ2

a√
b2 − ac+ aγ2

= −1

a
+

b

a

1√
b2 − ac+ aγ2

we have

w =
1√

b2 − ac+ aγ2
Σ−1µ−

(
1

a
− b

a

1√
b2 − ac+ aγ2

)
Σ−11. (34)

We now show that wV aR = w where wV aR and w are given in (4) and (34), respectively. From (4)–(6)
we get

wV aR =
1

a
Σ−11+

1√
a

1√
γ2 − µ⊤Rµ

(
Σ−1 − 1

a
Σ−111⊤Σ−1

)
µ

where s = µ⊤Rµ = c− b2/a giving

wV aR =
1

a
Σ−11+

1√
a

1√
b2 − ac+ aγ2

Σ−1

(
µ− b

a
1

)
or rearranging terms

wV aR =
1√

b2 − ac+ aγ2
Σ−1µ−

(
1

a
− b

a

1√
b2 − ac+ aγ2

)
Σ−11 = w.

Similarly, we get the expression for the CVaR optimal portfolio weights. The proof of the corollary is
now complete.

As there are infinitely many solutions so there is a possibility to select a solution with some additional
properties. In particular, similar to [11], it could be interesting to find a solution that has a minimum
L2-norm.

Theorem 2. The unique minimum norm solution to (12) is given as

wmin =
1

∥U⊤
2 1∥2 ∥x∥2 + 1

(
x+U2U

⊤
2 1∥x∥2

)
, (35)

with

∥wmin∥ =

∥∥x∥∥√
∥U⊤

2 1∥2 ∥x∥2 + 1
, (36)

where

x =
1

1⊤Σ†(µ− λ11)
Σ†(µ− λ11) (37)

with a, b and c are given in (19) and λ1 = λ−
1 if γ > 0 and λ1 = λ+

1 if γ < 0, see (18).

Proof. From (25), we calculate

∥w∥2 = ∥U1y1∥2 + ∥U2y2∥2 = ∥U1y1∥2 + ∥y2∥2.

Next, we use the expression in (33) and write the square of the norm as a function of y2,

∥w∥2 = (1− 1⊤U2y2)
2 ∥x∥2 + ∥y2∥2 := f(y2).

To find the critical values of f(y2) we calculate

∂f

∂y2
= −2(1− 1⊤U2y2) ∥x∥2U⊤

2 1+ 2y2 = 0. (38)
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Multiplying (38) with 1⊤U2 yields

−1⊤U2(1− β) ∥x∥2U⊤
2 1+ β = 0, β := 1⊤U2y2. (39)

Solving for β we obtain

1⊤U2y2 =
∥U⊤

2 1∥2 ∥x∥2

∥U⊤
2 1∥2 ∥x∥2 + 1

. (40)

Using this expression in (38), we derive

y2 =
U⊤

2 1 ∥x∥2

∥U⊤
2 1∥2 ∥x∥2 + 1

. (41)

Observe that from (40) we have 1− 1⊤U2y2 > 0. Thus the choice of λ1, see (17) simplifies to the sign of
γ.

Finally, substituting this y2 into the general solution given by (16) we arrive at (35) and (36).
The uniqueness follows from the fact that the Hessian of f ,

H = 2I+ 2 ∥x∥2U⊤
2 11

⊤U2,

is positive definite.

Remark 1. It can be easily seen that ∥wmin∥ < ∥x∥, which is the norm of w if y2 ≡ 0.

In Fig. 1 below is an illustration of the different solutions attained for the case p = 6 and r = 4. For
the input data see the caption text. Note the similarity in the sets for positive and negative γ which
seems to be a general property.

Figure 1: The solution set, in blue, when y2 ∈ (−3, 3)
2
. The two stars indicate the least norm solution,

red, and the solution with y2 = 0, yellow, for comparison. All given vectors have uniformly random
elements in (0, 1) where the problem size is p = 6 with rank r = 4.
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