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Abstract

This paper investigates the impact of artificial intelligence (AI) on hiring and em-
ployment, using the universe of job postings published by the Swedish Public Employ-
ment Service from 2014-2022 and universal register data for Sweden. We construct a
detailed measure of AI exposure according to occupational content and find that es-
tablishments exposed to AI are more likely to hire AI workers. Survey data further
indicate that AI exposure aligns with greater use of AI services. Importantly, rather
than displacing non-AI workers, AI exposure is positively associated with increased
hiring for both AI and non-AI roles. In the absence of substantial productivity gains
that might account for this increase, we interpret the positive link between AI exposure
and non-AI hiring as evidence that establishments are using AI to augment existing
roles and expand task capabilities, rather than to replace non-AI workers.
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1. Introduction

We investigate the impact of artificial intelligence (AI) on recent changes in establishments’

hiring patterns, exploiting the universe of job postings from the Swedish Public Employment

Service (Arbetsförmedlingen, AF) and universal register data for Swedish firms. Our study is

motivated by three main facts: (i) recent breakthroughs in AI technologies, such as natural

language processing, have enabled machines to perform or assist with tasks traditionally car-

ried out by white-collar workers, including roles in paralegal and consulting work (Agrawal

et al., 2018, Zhang et al., 2021, Dell’Acqua et al., 2023); (ii) labour demand for AI-related

skills has substantially increased over last decade (Maslej et al., 2024); and (iii) widespread

societal and academic concerns persist regarding AI’s potential negative impact on labor mar-

kets, particularly on white collar employment (Frey and Osborne, 2017, Korinek and Stiglitz,

2017, Acemoglu and Johnson, 2023, Susskind, 2022, Susskind and Susskind, 2018).

AI has the potential to redefine the boundary between codified versus tacit knowledge in

the workplace. By automating cognitive, nonroutine tasks like making predictions, AI can

take over specific functions while augmenting human roles in areas that are less amenable

to automation, such as product innovation and customer engagement. When automation

predominates without significant productivity gains, worker displacement may occur; con-

versely, if productivity gains are substantial, or AI complements human work or enables the

creation of new tasks, it may lead to increased labour demand (e.g., Acemoglu et al., 2022).

Ultimately, the question of the employment implications of AI is an empirical one.

While research on digital automation and labour markets has primarily studied the use of

computers or robots in manufacturing, our study also encompasses service firms. Advances

in AI increasingly expose professionals and other service workers to ‘thinking machines’ that

can perform complex, cognitive tasks. Moreover, the services sector now employs a growing

share of the workforce, and, in many economies, professional service industries comprise a
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larger portion of employment than manufacturing.1

Our study also contributes to the emerging literature that addresses the scarcity of data on

AI adoption in labor markets by using vacancy data, as pioneered in the U.S. context (Zolas

et al., 2021). The study most closely related ours is Acemoglu et al. (2022), which utilises on-

line vacancy data (2010-2018) to estimate the impact of AI exposure on establishment hiring

in US industries that use AI. They find a positive (negative) impact on the hiring of workers

with AI (non-AI) skills, but no employment effects. Building on this seminal work, we con-

struct, to the best of our knowledge, the first non-US establishment dataset (2014-2022) that

links AI exposure to hiring at the establishment level by leveraging Swedish job postings and

universal register data. Sweden is a small, open, highly servicified and digitalised economy

with similar AI adoption rates as in the USA. The Swedish register data enable us to mea-

sure AI exposure based on the actual workforce composition of establishments. We further

supplement our analysis with detailed survey data on AI use from Statistics Sweden.

We document a sharp rise in demand for AI-related skills and a strong, positive and statis-

tically significant association between AI exposure and AI hiring. In contrast to Acemoglu

et al. (2022), we also find that the more AI-exposed establishments increase their non-AI

hiring, resulting in overall employment growth. The positive link between AI exposure and

non-AI hiring in Sweden would be consistent with AI complementing workers in tasks, new

tasks being introduced, and/or the substantial productivity effects from AI as found in re-

cent studies (e.g., Hirvonen et al., 2022, Acemoglu and Restrepo, 2019, Acemoglu et al.,

2022, Dell’Acqua et al., 2023). Exploring potential mechanisms, we cautiously conclude that

Swedish establishments may be using AI to augment, rather than replace, non-AI work-

ers.

1Such services, which, e.g., include legal, auditing, management, architectural, and advertising services,
are also increasingly important in manufacturing as it servicifies, i.e., increasingly use, produce and sell
services (Lodefalk, 2013, 2017, Arnarson and Gullstrand, 2022)
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2. Data and empirical framework

2.1. Data Description

We employ the job vacancies posted on Sweden’s largest recruitment site Platsbanken. The

site is run by AF and has a mean of 448,000 jobs posted each year. Posting job ads at AF

was mandatory, but, since 2008, only remained so for central government establishments.

However, the regulatory change has only slightly reduced postings at AF (Cronert, 2019).

Posting job ads is free, and ads may be reposted to other sites, e.g., LinkedIn. From each

job ad, we use detailed information: job title, occupational code, organisation, municipality,

and specific skill requirements. Skill requirements are used to establish whether a vacancy

is AI-related.

We consider an AI-related vacancy as one requiring at least one AI skill. We extend the

categorisation of keywords by AI skill used by Deming and Noray (2020) by merging it with

keywords from Alekseeva et al. (2020) and the OECD work of Baruffaldi et al. (2020) (see

Table A1). As displayed in Figure 1, the share of AI vacancies has increased almost expo-

nentially in both Sweden and the USA since the mid-2010s, although from low levels.

For our study, we aggregate the job vacancy data to the establishment level, pooling vacancies

by organisation and municipality. We then split the data into two time periods to reduce noise

and improve precision: 2014-2016 and 2019-2022. The first period captures the state right

before major AI breakthroughs, e.g., Google’s notable improvement in machine translation

when adopting deep neural networks late 2016, and the second captures the state thereafter,

while allowing organisations time to act upon these advances. Finally, we study changes in

the posting of vacancies (establishment hiring) and employment. Table A.1 in the Online

Appendix provides further descriptive statistics at the establishment level.

We relate establishment changes in AI hiring and non-AI hiring to initial exposure to AI.

The exposure variable, also used in Acemoglu et al. (2022), is based on the AI occupational
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Figure 1
Share of AI Vacancies

Notes: This figure displays the shares of AI vacancies in the AF data from 2006 and onwards, as well as the timelines for the
US data from Maslej et al. (2023) and Alekseeva et al. (2021). Potential differences in methodology are not controlled for.

exposure index from (Felten et al., 2018), which assigns a score to each detailed occupation,

representing the likelihood that the occupation is affected by recent AI advancements. Ex-

posure is measured via the ability of AI to perform the work of an occupation. To construct

the exposure variable, the index for each establishment is calculated as the weighted average

of the index values for all occupations employed in the establishment between 2014 and 2016,

based on the universal Longitudinal Integrated Database for Health Insurance and Labour

Market Studies (LISA) from Statistics Sweden.2 While the exposure measure is positively

correlated with the occupational and establishment shares of AI vacancies in Sweden, the

measure is ex ante agnostic about its impacts: whether more exposed establishments will

adopt AI, how they will do it (by hiring or externally sourcing AI-services), and why (e.g.,

to replace or augment non-AI workers).

2LISA includes all individuals (≥ 15 years old) living in Sweden.
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2.2. Empirical Estimation

To study the impact of AI on establishment hiring and employment, we build on Acemoglu

et al. (2022) and estimate the following regression model:

∆Yi,t1−t0 = β0 + β1AIi,t0 +Xi,t0βX + ϵi,t1−t0 (1)

where ∆Yi,t1−t0 is the change in the inverse hyperbolic sine of outcome Y for establishment

i between periods t1 and t0, AIi,t0 is AI exposure, Xi,t0 is a row vector of confounders,

the βs are regression parameters, and ϵi,t1−t0 is an i.i.d. error term. For comparison, the

AI exposure variable is standardised so that the regression parameter is interpreted as the

change in the outcome variable associated with a one-standard deviation increase in the

explanatory variable.

In essence, the specification relates changes in hiring or employment to initial conditions in

terms of establishment workforce composition and the resulting exposure to AI developments.

We then add on indicator variables to control for confounding factors related to establishment

size, municipality, and firm. A potential concern is that AI exposure could be confounded by

a positive correlation between exposure to AI and to other computer software. We therefore

also add the measure of software exposure from Webb (2020), which is built on occupational

task and patent data.

3. Results

3.1. Impact of AI Exposure on Employment and Hiring

In Table 1, we present our estimation of Equation (1) for the hiring of AI and non-AI workers

as well as overall employment. Starting from a basic specification with covariates size and

location, we find a positive and statistically significant association between AI exposure and

both the hiring of AI and non-AI workers (Col. 1 and Col. 3) as well as employment (Col. 5).
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We then control for location and firm heterogeneity, as well as for software exposure (Col’s

2, 4, and 6). In this within-firm specification, which is our preferred one, the estimated links

to AI-hiring and employment are larger, while the one to non-AI hiring is somewhat smaller.

A one-standard deviation increase in AI exposure is linked to a 27 (23) percent increase in

the hiring of AI (non-AI) workers, and a 5 percent increase in employment.

Table 1
AI Exposure and Changes in Vacancies/Employment

Dependent variable ∆AI-hiring ∆Non-AI-hiring ∆Employment

(1) (2) (3) (4) (5) (6)
AI exposure 15.454∗∗∗ 26.561∗∗∗ 29.646∗∗∗ 23.153∗∗∗ 3.014∗∗ 4.507∗∗

(2.135) (6.639) (4.875) (6.854) (1.480) (2.239)
Size FE ✓ ✓ ✓
Location FE ✓ ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓
Observations 72,756 22,921 72,756 22,921 47,575 16,475

Notes: This table presents estimates from six establishment-level regressions, weighted by baseline employees. The outcome
variable is the change (×100) in the inverse hyperbolic sine of AI vacancies, non-AI vacancies, and total employment. The AI
exposure measure from Felten et al. (2018) is based on baseline employees, standardized. Columns (2), (4), and (6) include the
software exposure covariate from Webb (2020). Observations are lower in specifications with firm fixed effects due to omitted
singleton establishments. Standard errors are clustered at the firm level. * p<0.1; ** p<0.05; *** p<0.01.

Our results on AI hiring align qualitatively with those of Acemoglu et al. (2022) for the

USA. However, while they find indications of a negative impact of AI exposure on non-AI

hiring and an insignificant impact on aggregate employment, we find evidence of a positive

impact on both non-AI hiring and overall employment at the establishment level. Their

interpretation suggests that, in US establishments, AI displaces non-AI work. In contrast,

our results imply that Swedish firms may be using AI to augment rather than replace non-AI

workers–a point we revisit later. Another possible explanation is that Sweden’s higher wages

and labour scarcity may drive AI-induced productivity gains that support continued demand

for labour (Acemoglu and Restrepo, 2019). To reconcile these differences, we note that while

Sweden and the USA have similar AI adoption rates (5.4% and 6.6%, respectively), other

structural differences between the two economies are substantial (SCB, 2020, Zolas et al.,

2021).

Starting with firm size, the average firm in Sweden has four employees, while the US firm has
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four times as many, 16 employees (Bisnode, 2024, U.S. Census Bureau, 2024). Moreover, the

US job postings data in Acemoglu et al. (2022) are from the web scraping of firm websites by

the company Lightcast (previously Burning Glass Technologies). Lightcast data are known to

overrepresent high-skilled occupations and larger firms (Cammeraat and Squicciarini, 2021).

Our job postings data are from the official, and previously mandatory, outlet for job postings

in Sweden, why our data are likely to be less skewed towards high-skilled occupations and

larger firms.

These differences in the data generating processes may at least partially explain the patterns

we observe. Behaviour varies between larger and smaller firms in ways that may result

in larger AI-exposed firms predominantly substituting AI workers for non-AI workers – in

effect, specialising in AI – while smaller ones add on AI to complement existing non-AI

workers. Firstly, for a large firm that adopts new technology, it is arguably easier to fire

employees, than for a small firm where existing employees are necessary for daily operations.3

Secondly, smaller firms are commonly family-owned, and may therefore behave differently

when adopting AI than larger ones, which most often are publicly listed.4

3.2. Effects by Establishment Size

To examine potential heterogeneous effects across different size categories, we rerun our

estimations of Equation (1) for establishments above and below the median size. In Table

2, we display the results.

The estimates in Panel A do not indicate that larger Swedish establishments decrease non-

AI hiring, as in the US sample. Instead, the results are similar to the ones for all Swedish

establishments. However, interestingly, in Panel B, we find that for the smaller establish-

3Smaller firms are less likely to shed labour in response to shocks, and, if young, they tend to grow faster
(Bjuggren, 2015, Coad and Karlsson, 2022).

4In Sweden, 88 percent of micro-firms, which have at most 9 employees, are family owned, whereas only
8 percent of large firms are (Andersson et al., 2018). Family ownership has been found to be associated with
slower but more steady growth, being geographically dispersed, and being more likely to retain workers in
times of crisis (Andersson et al., 2018, Baù et al., 2024).
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Table 2
AI Exposure and Changes in Vacancies/Employment, by Establishment Size

Panel A: > median establishment size
Dependent variable ∆AI-hiring ∆Non-AI-hiring ∆Employment

(1) (2) (3) (4) (5) (6)
AI exposure 16.408∗∗∗ 27.780∗∗∗ 30.730∗∗∗ 23.116∗∗∗ 3.569∗∗ 4.595∗

(2.282) (7.120) (5.248) (7.313) (1.570) (2.366)
Size FE ✓ ✓ ✓
Location FE ✓ ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓
Observations 36,863 15,553 36,863 15,553 26,581 12,114

Panel B: < median establishment size
Dependent variable ∆AI-hiring ∆Non-AI-hiring ∆Employment

(1) (2) (3) (4) (5) (6)
AI exposure 0.293∗∗ 0.259 2.960∗∗∗ 11.090∗∗∗ 0.148 5.839∗∗

(0.144) (0.645) (0.715) (3.848) (0.474) (2.796)
Size FE ✓ ✓ ✓
Location FE ✓ ✓ ✓ ✓ ✓ ✓
Firm FE ✓ ✓ ✓
Observations 35,893 5,776 35,893 5,776 20,994 3,550

Notes: This table displays estimates from twelve establishment-level regressions, with baseline establishment number of em-
ployees as weights. Throughout, the outcome variable is the change in the inverse hyperbolic sine of AI vacancies, non-AI va-
cancies, and number of employees, multiplied by 100. The regressor is the AI exposure measure of Felten et al. (2018), average
of baseline establishment employees, normalised by its standard deviation. Estimations are performed on two different samples:
establishments above median (8) baseline number of employees (Panel A), and below median baseline number of employees
(Panel B). There are two regressions for each dependent variable. In Col’s (2), (4) and (6), the software exposure measure of
Webb (2020) is included as a covariate. Lower number of observations in specifications including firm fixed effects are due to
singleton establishments being omitted. Lower number of observations in specifications including firm fixed effects in Panel B
are due to smaller firms more often being singleton establishments. Standard errors are clustered at the firm level. * p<0.1; **
p<0.05; *** p<0.01.

ments, exposure to AI is no longer statistically significantly linked to AI hiring, while it still

is for non-AI hiring and employment. This could mean that smaller establishments do not

respond to AI exposure by adopting AI technology.5 Alternatively, smaller establishments

do adopt AI, but source their AI services from external suppliers (SCB, 2020). We explore

this possibility , using recent stratified firm survey data from SCB (2020, 2023).6 In Figure

2, we present stylised results from a probability model, regressing the probability of a firm

using internal or external AI services on AI exposure.

5AI is primarily adopted by larger firms and firms who have already invested in, e.g., cloud computing,
and smaller firms may lack the expertise for adopting AI (Alekseeva et al., 2021, Zolas et al., 2021, SCB,
2023).

6The survey (‘ICT usage in enterprises’) was mandatory and distributed to all firms with ≥ 200 employees
and a stratified random sample of firms with ≥ 10 employees. The response rate was 88% and 83% , in 2019
and 2021, respectively, resulting in approximately 4,200 firms being included each year.
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Figure 2
Exposure to AI and AI Use

Notes: This figure displays estimated coefficients from four firm-level probit regression. Throughout, the outcome variable
is an indicator variable for using internally or externally sourced AI, defined as any AI expenditure in 2019 or 2021, using
firm survey data from Statistics Sweden. The regressor is the AI exposure measure of Felten et al. (2018), based on firm
employment in 2019, normalised by its standard deviation. Estimations are performed separately for firms below and above
the mediannumber of employees. The sample is further limited to firms represented in the main regressions, in Table 1. Firm
size fixed effects, 3-digit industry fixed effects, and the software exposure measure of Webb (2020) are included in all regressions.
Error bars display the 95% confidence intervals.

For both larger and smaller firms, exposure to AI is positively and statistically significantly

associated with the probability to use AI services.7 We therefore conclude that AI exposure

is associated with AI use also for small firms in Sweden. However, larger firms are more

inclined to source AI services internally, a trend that does not hold for smaller firms, which

rely more on external providers.

3.3. Alternative Mechanisms

Having ruled out firm size as the primary explanation for the differing results between the

USA and Sweden, we turn to labour market characteristics. Sweden has a compressed wage

structure and high de facto minimum wages, while the USA has a very dispersed wage

distribution and low minimum wages.8 As in many other OECD countries, in Sweden,

7Firms that spend on AI services are substantially more likely to hire AI workers, see Table A2. The link
between spending on external AI services and hiring non-AI workers is also statistically significant, while
only a fraction of the one for hiring AI workers. However, spending on internal AI services is not associated
with the hiring of non-AI workers.

8The Gini coefficient is 30(40) for Sweden (the USA), and the population share with an income or
consumption below 50% of the median is 11(16) for Sweden (the USA), based on income after taxes and
benefits or consumption (World Bank, 2024). In 2023, for Sweden, the p10 to median wage was 73, and, for
the USA, the minimum to mean (median) wage was 18 (26) (OECD, 2024a, SCB, 2024).
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the labour market has been increasingly tight since the great financial crisis (Nordin and

Hammarlund, 2024, OECD, 2024b). It is therefore possible that the high Swedish wages, in

combination with labour scarcity, have led to substantial productivity improvements with

AI-induced automation, thereby sustaining demand for non-AI workers.

To investigate this further, we re-estimate Equation (1), using total factor productivity as

the outcome variable. The results are displayed in Col’s (1)-(2) of Table A3. Interestingly,

we find only a weakly significant and small positive association between AI exposure and

productivity, and no significant association when controlling for industry heterogeneity. In

the absence of a substantial productivity effect, we interpret the positive and statistically

significant link between AI exposure and non-AI hiring as an indication that Swedish es-

tablishments are using AI to augment, rather than replace, non-AI workers, such as for

developing new products or services.9 This would also be in line with evidence from the

previously mentioned survey that suggests that Swedish firms mainly use AI, for example,

to develop new offerings, customer insights, and gain market shares, rather than to improve

internal processes (SCB, 2020).10 The stylised results in Col’s (3)-(4) of Table A3 are consis-

tent with this conjecture, showing a positive, albeit weakly significant, association between

AI exposure and subsequent net turnover.

4. Concluding remarks

The importance of granular and multicountry evidence on AI and hiring patterns can hardly

be overstated (Arntz et al., 2017, Frank et al., 2019, Zolas et al., 2021). We exploit rich

Swedish public job posting data and universal register data for services and manufacturing

industries to investigate the establishment-level impact of AI on hiring and employment. We

9In Finland, Hirvonen et al. (2022) also find that advanced technologies adoption increases employment
and the technologies are for providing new products.

10Most (46-60%) of the surveyed firms use AI to develop or improve offerings or gain insights on relations
with customers/users. Only a minority (39%) state that AI use is related to internal processes or other
purposes, with small firms mentioning it less frequently (31%) than large firms (57%). Not even for the large
firms is the improvement of internal processes the main purpose of using AI.
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find a positive association between exposure to AI and hiring of AI workers. Notably, in

contrast to findings by Acemoglu et al. (2022) for the USA, we find significant and positive

effects of AI exposure on both non-AI hiring and total employment in Sweden.

The absence of non-AI worker displacement or major productivity gains from AI adoption

suggests that Swedish establishments are predominantly using AI to augment workers in

their tasks. However, further research is needed to confirm these patterns and examine their

persistence over time. Overall, we conclude that recent breakthroughs in AI technologies and

the resulting surges in demand for AI skills do not appear to have significantly negatively

impacted the employment of Swedish establishments, at least for now.
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Appendix

Table A1
AI Keywords

Deming and Noray (2020)
Splunk Support Vector Machines (SVM) Unsupervised LearningCaffe Deep Learning Framework Natural Language Processing
Apache Hadoop Bayesian Networks Boosting (Machine Learning) Natural Language Toolkit (NLTK)
Sqoop Clustering Semi-Supervised Learning Speech Recognition
Apache Hive Cluster Analysis Chef Infrastructure Automation Pattern Recognition
MapReduce Neural Networks Automation Tools Kernel Methods
TensorFlow Convolutional Neural Network (CNN) Automated Testing Image Recognition
Scikit-learn Recurrent Neural Network (RNN) Automation Systems Object Recognition
Mahout Human Machine Interface (HMI) Office Automation Image Processing
Keras Human Machine Interface (HMI) Control Systems Automation Consulting Machine Translation
OpenCV Supervised Learning (Machine Learning) Sales Automation Software Text Mining
Xgboost Machine-To-Machine (M2M) Communications Automation Test Environment Recommender Systems
Libsvm Machine Code Marketing Automation Latent Semantic Analysis
Word2vec Machine Vision Laboratory Automation Sentiment Analysis / Opinion Mining
Artificial Intelligence Computer Vision Automation Techniques Virtual Agents
Machine Learning Machine Translation (MT) Automated Underwriting System Chatbot
Robotics Torch (Machine Learning) Gradient Boosting AI Chatbot
Decision Trees Deep Learning Random Forest

Alekseeva et al. (2020)
AI ChatBot Image Recognition MARF Sentiment Analysis
AI KIBIT IPSoft Amelia MoSes Opinion Mining
ANTLR Ithink MXNet Sentiment Classification
Apertium Keras Natural Language Processing Speech Recognition
Artificial Intelligence Latent Dirichlet Allocation Natural Language Toolkit Supervised Learning
Automatic Speech Recognition Latent Semantic Analysis NLTK Support Vector Machines
ASR Lexalytics ND4J SVM
Caffe Deep Learning Framework Lexical Acquisition Nearest Neighbor Algorithm TensorFlow
Chatbot Lexical Semantics Neural Networks Text Mining
Computational Linguistics Libsvm Object Recognition Text to Speech
Computer Vision Machine Learning Object Tracking TTS
Decision Trees Machine Translation OpenCV Tokenization
Deep Learning MT OpenNLP Torch
Deeplearning4j Machine Vision Pattern Recognition Unsupervised Learning
Distinguo Madlib Pybrain Virtual Agents
Google Cloud Machine Learning Platform Mahout Random Forests Vowpal
Gradient boosting Microsoft Cognitive Toolkit Recommender Systems Wabbit
H2O MLPACK Semantic Driven Subtractive Clustering Method Word2Vec
IBM Watson Mlpy SDSCM Xgboost
Image Processing Modular Audio Recognition Framework Semi-Supervised Learning

Baruffaldi et al. (2020)
action recognition face recognition learning automata robot
human action recognition facial expression recognition link prediction biped robot
activity recognition factorisation machine logitboost humanoid robot
human activity recognition feature engineering long short term memory (LSTM) human-robot interaction
adaboost feature extraction lpboost industrial robot
adaptive boosting feature learning machine intelligence legged robot
adversarial network feature selection machine learning quadruped robot
generative adversarial network firefly algorithm extreme machine learning service robot
ambient intelligence fuzzy c machine translation social robot
ant colony fuzzy environment machine vision wheeled mobile robot
ant colony optimisation fuzzy logic madaboost rough set
artificial intelligence fuzzy number MapReduce rule learning
human aware artificial intelligence fuzzy set Markovian rule-based learning
association rule intuitionistic fuzzy set hidden Markov model self-organising map
autoencoder fuzzy system memetic algorithm self-organising structure
autonomic computing t s fuzzy system meta learning semantic web
autonomous vehicle Takagi-Sugeno fuzzy systems motion planning semi-supervised learning
autonomous weapon gaussian mixture model multi task learning sensor fusion
backpropagation gaussian process multi-agent system sensor data fusion
Bayesian learning genetic algorithm multi-label classification multi-sensor fusion
bayesian network genetic programming multi-layer perceptron sentiment analysis
bee colony gesture recognition multinomial naive Bayes similarity learning
artificial bee colony algorithm gradient boosting multi-objective optimisation simultaneous localisation mapping
blind signal separation gradient tree boosting naive Bayes classifier single-linkage clustering
bootstrap aggregation graphical model natural gradient sparse representation
brain computer interface gravitational search algorithm natural language generation spectral clustering
brownboost hebbian learning natural language processing speech recognition
chatbot hierarchical clustering natural language understanding speech to text
classification tree high-dimensional data nearest neighbour algorithm stacked generalisation
cluster analysis high-dimensional feature neural network stochastic gradient
cognitive automation high-dimensional input artificial neural network supervised learning
cognitive computing high-dimensional model convolutional neural network support vector regression
cognitive insight system high-dimensional space deep convolutional neural network swarm intelligence
cognitive modelling high-dimensional system deep neural network swarm optimisation
collaborative filtering image classification recurrent neural network particle swarm optimisation
collision avoidance image processing neural turing temporal difference learning
community detection image recognition neural turing machine text mining
computational intelligence image retrieval neuromorphic computing text to speech
computational pathology image segmentation non negative matrix factorisation topic model
computer vision independent component analysis object detection totalboost
cyber physical system inductive monitoring object recognition trajectory planning
data mining instance-based learning obstacle avoidance trajectory tracking
decision tree intelligence augmentation pattern recognition transfer learning
deep belief network intelligent agent pedestrian detection trust region policy optimisation
deep learning intelligent software agent policy gradient methods unmanned aerial vehicle
dictionary learning intelligent classifier Q-learning unsupervised learning
dimensionality reduction intelligent geometric computing random field variational inference
dynamic time warping intelligent infrastructure random forest vector machine
emotion recognition Kernel learning rankboost support vector machine
ensemble learning K-means recommender system virtual assistant
evolutionary algorithm latent dirichlet allocation regression tree visual servoing
differential evolution algorithm latent semantic analysis reinforcement learning xgboost
multi-objective evolutionary algorithm latent variable relational learning
evolutionary computation layered control system statistical relational learning

16



Table A2
AI Use and Hiring

Dependent variable Pr(AI-hiring) Pr(non-AI-hiring)

Source of AI services Internal External Internal External
(1) (2) (3) (4)

AI use (1,0) 0.921*** 0.901*** 0.094 0.278**
(0.115) (0.160) (0.101) (0.140)

Controls ✓ ✓ ✓ ✓
Observations 3,801 3,801 6,082 6,082

Notes: This table displays estimates from four firm-level probit regressions. Through-
out, the outcome variables are the probabilities to post at least one AI vacancy or
non-AI vacancy. The regressor is a dummy variable representing the use of internally
or externally sourced AI, defined as any AI expenditure, and using survey data from
Statistics Sweden. Controls (in logs) are human and capital intensities as well as labour
productivity. The software exposure measure of Webb (2020) is also included as a co-
variate is all regressions. Standard errors are clustered at the firm-level. * p<0.1; **
p<0.05; *** p<0.01.

Table A3
AI Exposure, Productivity and Revenues

Dependent variable ∆Total factor productivity ∆Revenue

(1) (2) (3) (4)
AI exposure 4.939∗ 2.653 5.750 13.620∗

(2.918) (2.468) (7.539) (7.546)
Size FE ✓ ✓ ✓ ✓
Industry FE ✓ ✓
Observations 20,680 20,665 57,647 57,636

Notes: This table displays estimates from four firm-level regressions, with baseline firm number of em-
ployees as weights. Throughout, the outcome variable is the change in the inverse hyperbolic sine of
total factor productivity, and net revenue, multiplied by 100. The regressor is the AI exposure measure
of Felten et al. (2018), average of baseline firm employees, normalised by its standard deviation. There
are two regressions for each dependent variable. In Col’s (2) and (4), the software exposure measure of
Webb (2020) is included as a covariate. Regression is at firm level. Following the method of Table 1 as
closely as possible, t0 is 2014-2016, while t1 is 2020 (2020 is the latest year of firm financial data). Total
factor productivity is estimated using the methodology of Levinsohn and Petrin (2003), with corrections
by Ackerberg et al. (2015). Lower number of observations in Col’s (1)-(2) are due to the exclusion of
observations with zeroes in the input variables for the estimation of total factor productivity, as these
are log transformed. Standard errors are clustered at firm level. * p<0.1; ** p<0.05; *** p<0.01.

17



Online Appendix

Artificial Intelligence, Employment and Skills

Erik Engberg

Mark Hellsten

Farrukh Javed

Magnus Lodefalk

Radka Sabolová

Sarah Schroeder

Aili Tang

November 7, 2024



A. Additional Tables and Figures

Table A.1: Descriptive Statistics

Obs. Mean Median Std.
Establishment-level sample:

Number of employees 89,445 38.171 7.667 314.563
Felten et al. (2018) AI exposure 89,433 0.357 < mean 0.028
Webb (2020) AI exposure 89,433 0.407 < mean 0.137
∆AI-hiring 245,948 1.992 0 26.927
∆Non-AI-hiring 245,948 16.005 0 216.431
∆Employment 61,982 8.280 < mean 80.905

Firm-level sample:

Number of employees (2019) 69,997 54.068 6 573.456
Pr(Internal AI expenditure) 5,907 0.052 0 0.222
Pr(External AI expenditure) 5,907 0.025 0 0.156
Felten et al. (2018) AI exposure (2019) 69,966 -0.043 < mean 0.893
Webb (2020) AI exposure (2019) 69,966 -0.269 < mean 0.614

Number of employees (2014-2016) 76,405 52.412 6.333 547.663
∆Total factor productivity 20,712 -10.637 > mean 51.646
∆Net revenue 63,316 -29.857 > mean 332.588
Felten et al. (2018) AI exposure (2014-2016) 76,394 -0.160 < mean 0.843
Webb (2020) AI exposure (2014-2016) 76,394 -0.127 < mean 0.662
Notes: This table displays summary descriptives of data at establishment and firm level. Medians consisting of micro-data replaced
with size relative to mean.

Table A.2: Exposure to AI and AI use (extensive margin)

Dependent variable Pr(AI-internal) Pr(AI-external)

Sample split by median Full sample Below Above Full sample Below Above
(1) (2) (3) (4) (5) (6)

AI exposure 0.677*** 0.590*** 0.740*** 0.646*** 0.601*** 0.668***
(0.068) (0.120) (0.082) (0.086) (0.140) (0.101)

Size FE ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,828 2,458 2,910 5,708 2,150 2,656

Notes: This table displays estimates for six probit regression specifications. Throughout, the outcome variable is probabil-
ities to use internally or externally sourced AI, defined as any AI expenditure in the period 2019-2022. The regressor is the
AI exposure measure of Felten et al. (2018), based on firm employees in 2019, normalised by its standard deviation. Esti-
mations are performed on three different samples: The full sample of firms, firms below median (36) number of employees
in 2019, and firms above median number of employees in 2019. The sample is further limited to firms present in the main
regression in Table 1. The software exposure measure of Webb (2020) is included as a covariate is all regressions. Lower
number of observations in the below median sample is lower due to more industries having no AI usage, and so they are
omitted for perfectly predicting AI usage. Robust standard errors are in parentheses. * p<0.1; ** p<0.05; *** p<0.01.

1



Table A.3: Exposure to AI and AI use (intensive margin)

Dependent variable log(AI-internal expenditure) log(AI-external expenditure)

Sample split by median Full sample Below Above Full sample Below Above
(1) (2) (3) (4) (5) (6)

AI exposure 0.377*** 0.183*** 0.596*** 0.197*** 0.077*** 0.333***
(0.035) (0.030) (0.069) (0.028) (0.020) (0.056)

Size FE ✓ ✓
Industry FE ✓ ✓ ✓ ✓ ✓ ✓
Observations 5,897 2,941 2,956 5,897 2,941 2,956

Notes: This table displays estimates for six regression specifications. Throughout, the outcome variable is the log of expen-
diture on internally or externally sourced AI, using the sum of AI expenditure in the period 2019-2022. Log approximated
by inverse hyperbolic sine to allow for zeroes. The regressor is the AI exposure measure of Felten et al. (2018), based on
firm employees in 2019, normalised by its standard deviation. Estimations are performed on three different samples: The
full sample of firms, firms below median (36) number of employees in 2019, and firms above median number of employees
in 2019. The sample is further limited to firms present in the main regression in Table 1. The software exposure measure
of Webb (2020) is included as a covariate is all regressions. Lower number of observations in the below median sample is
lower due to more industries having no AI usage, and so they are omitted for perfectly predicting AI expenditure. Robust
standard errors are in parentheses. * p<0.1; ** p<0.05; *** p<0.01.

Table A.4: AI Exposure and Financial Indicators

Dependent variable ∆Revenue ∆Profit ∆EBITDA

(1) (2) (3) (4) (5) (6)
AI exposure 5.750 13.620* -59.951 -11.416 -14.816 116.619

(7.539) (7.546) (98.907) (82.276) (96.432) (72.666)
Size FE ✓ ✓ ✓ ✓ ✓ ✓
Industry FE ✓ ✓ ✓
Observations 57,647 57,636 57,647 57,636 57,647 57,636

Notes: This table displays estimates from four firm-level regressions, with baseline firm number of employ-
ees as weights. Throughout, the outcome variable is the change in the inverse hyperbolic sine of net revenue,
profit, and Earnings before interest, taxes, depreciation and amortization (EBITDA), multiplied by 100. The
regressor is the AI exposure measure of Felten et al. (2018), average of baseline firm employees, normalised
by its standard deviation. There are two regressions for each dependent variable. In Col’s (2), (4) and (6),
the software exposure measure of Webb (2020) is included as a covariate. Regression is at firm level. Follow-
ing the method of Table 1 as closely as possible, t0 is 2014-2016, while t1 is 2020 (2020 is the latest year of
firm financial data). Standard errors are clustered at firm level. * p<0.1; ** p<0.05; *** p<0.01.

2



References

Felten, E., Raj, M., and Seamans, R. (2018). ‘A method to link advances in artificial intel-

ligence to occupational abilities.’ AEA Papers and Proceedings, 108, 54-57.

Webb, M. (2020). ‘The Impact of Artificial Intelligence on the Labor Market.’ Unpublished

manuscript, Stanford.

3


	new title page
	WORKING PAPER 10/2024 (Economics)
	Artificial Intelligence, Hiring and Employment: Job Postings
	Evidence from Sweden

	Lodefalk_7nov2024_long_version
	Lodefalk_7nov2024
	Introduction
	Data and empirical framework
	Data Description
	Empirical Estimation

	Results
	Impact of AI Exposure on Employment and Hiring
	Effects by Establishment Size
	Alternative Mechanisms

	Concluding remarks
	Appendices

	Lodefalk_7nov2024_onlineappendix
	Appendices





