Martin Längkvist
Martin Längkvist Position: Senior Lecturer School/office: School of Science and TechnologyEmail: bWFydGluLmxhbmdrdmlzdDtvcnUuc2U=
Phone: No number available
Room: T2235
About Martin Längkvist
I am a researcher at the Machine Perception and Interaction Lab at AASS Research Center, Department of Science and Technology, Örebro University, Sweden. I received my Ph.D in Computer Science in Örebro in 2015.
My research interest is in machine learning, specifically learning good representations from raw sensory data. I believe finding good representations is the key to designing a system that can solve interesting challenging real-world problems, go beyond human-level intelligence, and ultimately explain complicated data for us that we don't understand. In order to achieve this, I envision a learning algorithm that can learn feature representations from both unlabeled and labeled data, be guided with and without human interaction, and that are on different levels of abstractions in order to bridge the gap between low-level sensory data and high-level abstract concepts.
You can find more about my research and publications at my Google Profile Page or Research Gate Page or MPI lab member website.
Research projects
Active projects
- BioLearning - Using bioindicators, biomarker profiles and machine learning to improve water quality analysis
- CleanSat - SIG AI
Completed projects
Research groups
Publications
Articles in journals
- Rahaman, G. M. A. , Längkvist, M. & Loutfi, A. (2024). Deep learning based automated estimation of urban green space index from satellite image: A case study. Urban Forestry & Urban Greening, 97. [BibTeX]
- Neelakantan, S. , Norell, J. , Hansson, A. , Längkvist, M. & Loutfi, A. (2024). Neural network approach for shape-based euhedral pyrite identification in X-ray CT data with adversarial unsupervised domain adaptation. Applied Computing and Geosciences, 21. [BibTeX]
- Paylar, B. , Längkvist, M. , Jass, J. & Olsson, P. (2023). Utilization of Computer Classification Methods for Exposure Prediction and Gene Selection in Daphnia magna Toxicogenomics. Biology, 12 (5). [BibTeX]
- Sjöqvist, H. , Längkvist, M. & Javed, F. (2020). An Analysis of Fast Learning Methods for Classifying Forest Cover Types. Applied Artificial Intelligence, 34 (10), 691-709. [BibTeX]
- Alirezaie, M. , Längkvist, M. , Sioutis, M. & Loutfi, A. (2019). Semantic Referee: A Neural-Symbolic Framework for Enhancing Geospatial Semantic Segmentation. Semantic Web, 10 (5), 863-880. [BibTeX]
- Längkvist, M. , Jendeberg, J. , Thunberg, P. , Loutfi, A. & Lidén, M. (2018). Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks. Computers in Biology and Medicine, 97, 153-160. [BibTeX]
- Alirezaie, M. , Kiselev, A. , Längkvist, M. , Klügl, F. & Loutfi, A. (2017). An Ontology-Based Reasoning Framework for Querying Satellite Images for Disaster Monitoring. Sensors, 17 (11). [BibTeX]
- Persson, A. , Längkvist, M. & Loutfi, A. (2017). Learning Actions to Improve the Perceptual Anchoring of Object. Frontiers in Robotics and AI, 3 (76). [BibTeX]
- Längkvist, M. , Kiselev, A. , Alirezaie, M. & Loutfi, A. (2016). Classification and Segmentation of Satellite Orthoimagery Using Convolutional Neural Networks. Remote Sensing, 8 (4). [BibTeX]
- Längkvist, M. & Loutfi, A. (2015). Learning feature representations with a cost-relevant sparse autoencoder. International Journal of Neural Systems, 25 (1), 1450034. [BibTeX]
- Längkvist, M. , Coradeschi, S. , Loutfi, A. & Rayappan, J. B. B. (2013). Fast Classification of Meat Spoilage Markers Using Nanostructured ZnO Thin Films and Unsupervised Feature Learning. Sensors, 13 (2), 1578-1592. [BibTeX]
- Längkvist, M. , Karlsson, L. & Loutfi, A. (2012). Sleep stage classification using unsupervised feature learning. Advances in Artificial Neural Systems, 107046. [BibTeX]
Articles, reviews/surveys
- Längkvist, M. , Karlsson, L. & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42 (1), 11-24. [BibTeX]
Chapters in books
- Alirezaie, M. , Längkvist, M. & Loutfi, A. (2020). Knowledge Representation and Reasoning Methods to Explain Errors in Machine Learning. In: Ilaria Tiddi, Freddy Lécué, Pascal Hitzler, Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges. . IOS Press. [BibTeX]
Conference papers
- Aregbede, V. , Abraham, S. S. , Persson, A. , Längkvist, M. & Loutfi, A. (2024). Affordance-Based Goal Imagination for Embodied AI Agents. In: 2024 IEEE International Conference on Development and Learning (ICDL). Paper presented at IEEE International Conference on Development and Learning (ICDL 2024), Austin, Texas, USA, May 20-23, 2024. (pp. 1-6). IEEE. [BibTeX]
- Neelakantan, S. , Hansson, A. , Norell, J. , Schött, J. , Längkvist, M. & Loutfi, A. (2024). Machine Learning for Lithology Analysis using a Multi-Modal Approach of Integrating XRF and XCT data. In: 14th Scandinavian Conference on Artificial Intelligence SCAI 2024, June 10-11, 2024, Jönköping, Sweden. Paper presented at 14th Scandinavian Conference on Artificial Intelligence (SCAI 2024), Jönköping, Sweden, June 10-11, 2024. [BibTeX]
- Landin, C. , Zhao, X. , Längkvist, M. & Loutfi, A. (2023). An Intelligent Monitoring Algorithm to Detect Dependencies between Test Cases in the Manual Integration Process. In: 2023 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW). Paper presented at 16th IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW 2023), Dublin, Ireland, April 16-20, 2023. (pp. 353-360). IEEE. [BibTeX]
- Rahaman, G. M. A. , Längkvist, M. & Loutfi, A. (2022). Deep Learning based Aerial Image Segmentation for Computing Green Area Factor. In: 2022 10th European Workshop on Visual Information Processing (EUVIP). Paper presented at 10th European Workshop on Visual Information Processing (EUVIP), Lisbon, Portugal, September 11-14, 2022. IEEE. [BibTeX]
- Blad, S. , Längkvist, M. , Klügl, F. & Loutfi, A. (2022). Empirical analysis of the convergence of Double DQN in relation to reward sparsity. In: Wani, MA; Kantardzic, M; Palade, V; Neagu, D; Yang, L; Chan, KY, 21st IEEE International Conference on Machine Learning and Applications. ICMLA 2022 Proceedings. Paper presented at 21st IEEE International Conference on Machine Learning and Applications (IEEE ICMLA), Nassau, Bahamas, December 12-14, 2022. (pp. 591-596). IEEE. [BibTeX]
- Landin, C. , Tahvili, S. , Haggren, H. , Längkvist, M. , Muhammad, A. & Loutfi, A. (2020). Cluster-Based Parallel Testing Using Semantic Analysis. In: 2020 IEEE International Conference On Artificial Intelligence Testing (AITest). Paper presented at 2nd IEEE International Conference on Artificial Intelligence Testing (AITest 2020), Oxford, United Kingdom, August 3-6, 2020. (pp. 99-106). IEEE. [BibTeX]
- Längkvist, M. , Persson, A. & Loutfi, A. (2020). Learning Generative Image Manipulations from Language Instructions. Paper presented at Concepts in Action: Representation, Learning, and Application (CARLA 2020), Virtual workshop, September 22-23, 2020. [BibTeX]
- Landin, C. , Hatvani, L. , Tahvili, S. , Haggren, H. , Längkvist, M. , Loutfi, A. & Håkansson, A. (2020). Performance Comparison of Two Deep Learning Algorithms in Detecting Similarities Between Manual Integration Test Cases. In: The Fifteenth International Conference on Software Engineering Advances. Paper presented at The Fifteenth International Conference on Software Engineering Advances (ICSEA 2020), Porto, Portugal, October 18-22, 2020. (pp. 90-97). International Academy, Research and Industry Association (IARIA). [BibTeX]
- Alirezaie, M. , Längkvist, M. , Sioutis, M. & Loutfi, A. (2018). A Symbolic Approach for Explaining Errors in Image Classification Tasks. Paper presented at 27th International Joint Conference on Artificial Intelligence (IJCAI), Stockholm, Sweden, July 13-19, 2018. [BibTeX]
- Lidén, M. , Jendeberg, J. , Längkvist, M. , Loutfi, A. & Thunberg, P. (2018). Discrimination between distal ureteral stones and pelvic phleboliths in CT using a deep neural network: more than local features needed. Paper presented at European Congress of Radiology (ECR) 2018, Vienna, Austria, 28 Feb.-4 Mar., 2018. [BibTeX]
- Alirezaie, M. , Kiselev, A. , Klügl, F. , Längkvist, M. & Loutfi, A. (2017). Exploiting Context and Semantics for UAV Path-finding in an Urban Setting. In: Emanuele Bastianelli, Mathieu d'Aquin, Daniele Nardi, Proceedings of the 1st International Workshop on Application of Semantic Web technologies in Robotics (AnSWeR 2017), Portoroz, Slovenia, May 29th, 2017. Paper presented at International Workshop on Application of Semantic Web technologies in Robotics co-located with 14th Extended Semantic Web Conference (ESWC), Portoroz, Slovenia, 28th May-1st June, 2017. (pp. 11-20). Technical University Aachen. [BibTeX]
- Längkvist, M. , Alirezaie, M. , Kiselev, A. & Loutfi, A. (2016). Interactive Learning with Convolutional Neural Networks for Image Labeling. In: International Joint Conference on Artificial Intelligence (IJCAI). Paper presented at International Joint Conference on Artificial Intelligence (IJCAI), New York, USA, 9-15th July, 2016. [BibTeX]
- Alirezaie, M. , Längkvist, M. , Kiselev, A. & Loutfi, A. (2016). Open GeoSpatial Data as a Source of Ground Truth for Automated Labelling of Satellite Images. In: Krzysztof Janowicz et al., SDW 2016 Spatial Data on the Web, Proceedings. Paper presented at The 9th International Conference on Geographic Information Science (GIScience 2016), Montreal, Canada, September 27-30, 2016. (pp. 5-8). CEUR Workshop Proceedings. [BibTeX]
- Längkvist, M. & Loutfi, A. (2012). Learning Representations with a Dynamic Objective Sparse Autoencoder. Paper presented at Neural Information Processing Systems. [BibTeX]
- Längkvist, M. & Loutfi, A. (2012). Not all signals are created equal: Dynamic objective auto-encoder for multivariate data. Paper presented at NIPS Workshop on Deep Learning and Unsupervised Feature Learning, 2012. [BibTeX]
- Längkvist, M. & Loutfi, A. (2011). Unsupervised feature learning for electronic nose data applied to Bacteria Identification in Blood. Paper presented at NIPS 2011 Workshop on Deep Learning and Unsupervised Feature Learning. [BibTeX]
Doctoral theses, comprehensive summaries
- Längkvist, M. (2014). Modeling time-series with deep networks. (Doctoral dissertation). (Comprehensive summary) Örebro: Örebro university. [BibTeX]
Manuscripts
- Längkvist, M. , Loutfi, A. & Karlsson, L. Selective attention auto-encoder for automatic sleep staging. [BibTeX]