Johan Andersson
Johan Andersson Position: Senior Lecturer School/office: School of Science and TechnologyEmail: am9oYW4uYW5kZXJzc29uO29ydS5zZQ==
Phone: +46 19 303297
Room: T2114b
Research subject
About Johan Andersson
I teach mathematics for the mathematics program, the engineering programs and the subject teacher program and do research in analytic number theory. I am especially interested in the analytic theory of zeta-functions and L-functions. In recent years I have a number of new results on Voronin universality of zeta and L-functions.
Research groups
Publications
Articles in journals |
Chapters in books |
Manuscripts |
Articles in journals
- Andersson, J. , Garunkstis, R. , Kacinskaite, R. , Nakai, K. , Pankowski, L. , Sourmelidis, A. , Steuding, R. , Steuding, J. & et al. (2024). Notes on universality in short intervals and exponential shifts. Lithuanian Mathematical Journal. [BibTeX]
- Andersson, J. & Södergren, A. (2020). On the universality of the Epstein zeta function. Commentarii Mathematici Helvetici, 95 (1), 183-209. [BibTeX]
- Andersson, J. & Gauthier, P. M. (2014). Mergelyan’s theorem with polynomials non-vanishing on unions of sets. Complex Variables and Elliptic Equations, 59 (1), 99-109. [BibTeX]
- Andersson, J. (2013). Mergelyan's approximation theorem with nonvanishing polynomials and universality of zeta-functions. Journal of Approximation Theory, 167, 201-210. [BibTeX]
- Andersson, J. (2008). On some power sum problems of montgomery and Turán. International mathematics research notices, 2008 (1). [BibTeX]
- Andersson, J. (2007). Disproof of some conjectures of P. Turán. Acta Mathematica Hungarica, 117 (3), 245-250. [BibTeX]
- Andersson, J. (2007). Explicit solutions to certain inf max problems from Turán power sum theory. Indagationes mathematicae, 18 (2), 189-194. [BibTeX]
Chapters in books
- Andersson, J. (2009). Lavrent\cprime ev’s approximation theorem with nonvanishing polynomials and universality of zeta-functions. In: Rasa Steuding, Jörn Steuding, New directions in value-distribution theory of zeta and L-functions (pp. 7-10). Aachen: Shaker Verlag. [BibTeX]
- Andersson, J. (2007). On the solutions to a power sum problem. In: Analytic and probabilistic methods in number theory / Analiziniai ir tikimybiniai metodai skaiči\polhk u teorijoje (pp. 1-5). Vilnius: TEV. [BibTeX]
Manuscripts
- Andersson, J. & Rousu, L. Polynomial approximation avoiding values in countable sets. [BibTeX]
- Andersson, J. Voronin Universality in several complex variables. [BibTeX]
- Andersson, J. On questions of Cassels and Drungilas-Dubickas. [BibTeX]
- Andersson, J. Bounded prime gaps in short intervals. [BibTeX]