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Abstract 

Wind power must expand to meet the increasing electricity demand while tackling the ongoing 

climate issue. However, there has been an increase in local opposition, leading to an intensified 

discussion of the magnitude of the external effects. In this study, we conduct a meta-analysis, 

relying on 169 property value estimates presented in 20 studies, to examine whether, and to 

what extent, property prices are affected by the distance to wind turbines. We also test how this 

relationship is affected by the construction or announcement year as well as the population 

density in the studied area. We find no significant effect of construction year but find that 

studies with one more inhabitant per square kilometer find a more negative effect of 0.01 

percentage points. Regarding distance, we find a negative and significant effect when distance 

bands of 1 km each are used. Further, the negative effect size generally decreases the further 

away the property is from a wind turbine. 
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1. Introduction 

Wind power met 17% of the EU electricity demand in 2022. Even so, it is argued that the 

installed capacity of wind power must increase as part of the solution to the ongoing climate 

issue (Barthelmie & Pryor, 2021). If we define a good site for wind power as sites where there 

are good wind conditions and small impact on humans, we could argue that many of the best 

sites for wind power have been exploited. Thus, we should expect an increase in suggested 

sites where the external effects of wind power are more visible, and where new projects are 

ever more contested. This can be seen in the increased local opposition (e.g., Niskanen et al., 

2024; Reusswig et al., 2016; Susskind et al., 2022). It is likely that we will get an intensified 

discussion of the magnitude of the external effects. One way to measure these effects is by 

analyzing the effect of wind power turbines on real estate values in adjacent properties. In this 

study, we conduct a meta-analysis to examine previous findings on how the distance to the 

nearest wind turbine affects real estate values. We use distance as a measurement of disturbance 

from wind turbines as it is assumed to incorporate effects on view, noise, and flicker from the 

wind turbine.  

Earlier literature does not present a unified picture of the impact on property values. North 

American studies tend to be inconclusive (Castleberry & Greene, 2018; Hoen et al., 2011, 

2015; Lang et al., 2014) with a few showing negative or mixed effects on property values 

(Heintzelman & Tuttle, 2012; Vyn, 2018). European studies on the other hand tend to show 

negative effects (Dröes & Koster, 2016, 2021; Gibbons, 2015; Jensen et al., 2014, 2018; Sunak 

& Madlener, 2016, 2017). 

We think the choice of studying the impact of wind power development on property values is 

motivated by the facts that: (a) it can be seen as a direct valuation of the external effects; and 

(b) the empirical literature is large enough to draw conclusions. The econometric analysis in 

the paper relies on 169 property value estimates presented in 20 studies conducted during the 

time period 2011–2021. These studies are in turn employing data over the period 1985–2020.  

Schütt (2024) published a comprehensive meta-analysis on the effect of wind turbines on 

property values. This is to our knowledge the only meta-analysis previously conducted on this 

subject, with the exception of a mini meta-analysis included in a literature review by Parsons 

and Heintzelman (2022), in which 18 observations are used to calculate the mean effect. We 

contribute to this literature by estimating the effect for different distance bands, instead of, like 

Schütt (2024), including the mean distance in our estimations. Further, Schütt (2024) 

thoroughly examines the effect of data and model specifications, such as whether the exact 

wind turbine or property coordinates are used, whether a difference-in-difference model is 

used, and whether the regression includes control variables for amenities and other 

disseminates, while we take a more policy related approach. As compensation for residents 

affected by wind power has become a more debated issue, it is crucial to also look at factors 

that might affect the relationship between wind turbines and property values, but usually are 

not included in the literature, such as population density. 
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To account for study-specific effects, we use fixed-effect models with clustered standard errors. 

As we only include estimates from one full sample regression and sub-sample regressions, 

when such are included, from each paper, there is no within-study variation for model 

specifications. Instead, we focus on the effect of wind turbines on property values for properties 

within different distance bands from the turbines. 

In the initial part of our meta-analysis, we see that later studies generally find more of a negative 

impact. Thus, studies with data from earlier periods may have less negative impact than later 

studies. To control for this, we include a variable for mean announcement or construction 

effect, depending on whether it is the effect of announcing or constructing a wind turbine that 

is being studied. Additionally, we control for the population density in the studied area. Thus, 

we can explicitly test the hypothesis that earlier wind power developments avoided areas with 

other competing (to wind power production) values by comparing the different time periods 

studied in the studied literature. In addition, we can test whether population density impacts 

the empirical estimates. 

2. The impact of wind power 

Apart from the production of electricity, wind power electricity generation can broadly be said 

to have two positive values. First, the electricity generation is renewable, and as such it fits 

well in a future circular economy. This is a value not explicitly renumerated in many countries 

but can be said to be part of the reason for subsidizing wind where that is the practice. Secondly, 

wind power is climate-friendly as no climate gases are emitted during electricity generation. 

The climate effect is however priced via the EU emissions trading which raises electricity 

prices. So that effect is included in the wind power economic calculations.  

Wind power also has negative values. Most commonly cited are the impacts on fauna and the 

landscape view (Dai et al., 2015; Wang & Wang, 2015). Latter external effects discussed are 

for example infra-noise and negative effects on reindeer herding. In our case, the most 

important issues would be the changing landscape and noise/light issues. These could both 

impact the values of adjacent properties in a negative way.  

2.1. Property values and hedonic pricing  

Hedonic pricing is one of the main methods used to value non-market goods. Fundamentally it 

presumes that an individual’s decision to purchase goods or services depends on the features 

or attributes of those goods (Hanley et al., 1997). The hedonic pricing method is often used 

when investigating property markets (e.g., Khoshnoud et al., 2023). Environmental effects such 

as aesthetic degradation of the landscape view, noise, and light flicker associated with wind 

farm installation are likely affecting housing values.  

We can typically divide the characteristics into three groups (Khoshnoud et al., 2023; Kong et 

al., 2007; Skenteris et al., 2019). First, we have physical attributes such as those mentioned 

above.  Second, we have neighborhood characteristics such as good schools, transportation 

infrastructure, closeness to services, etc.  Finally, we have environmental characteristics such 

as views, noise, air pollution, and proximity to lakes and forests. Assembling data on such 



 

3 

 

characteristics we can use econometrics to derive a value on different characteristics for the 

value of housing. 

3. Literature review 

In an early study, Sims and Dent (2007) find that property values in the UK located within a 

mile of a wind farm were affected. These results contradicted interviews conducted with estate 

agents from the area, which revealed no negative attitudes toward wind farms upon the 

purchase of nearby houses. By analyzing over 11,000 sales transactions in the USA, 

Heintzelman and Tuttle (2012) study the impact of wind power on property values. Their 

results also conclude that closer proximity to wind farms results in a reduction in property 

values. This result was again confirmed by Sunak and Madlener (2016) in a study covering  

North Rhine-Westphalia, Germany. Jensen et al. (2018) use hedonic pricing models to 

investigate how onshore and offshore wind turbines affect property values in Denmark, and 

find that the price of properties within a distance of three kilometers from an onshore wind 

farm is negatively affected. Their results were mixed as they find no impact of offshore wind 

turbines on property values.  The results of negative impacts are confirmed by Skenteris et al. 

(2019) studying Greece,  Dröes & Koster (2021) and Eichholtz et al. (2023), both studying the 

Netherlands, (Jarvis, 2021) studying the UK but got mixed results, Joly and De Jaeger (2021) 

Belgium and Westlund and Wilhelmsson (2021) studying Sweden.  

 In a later study, Heintzelman et al. (2017) find decreasing values in New York, USA. On the 

other hand, no negative impacts were identified on properties in Ontario, Canada. There are 

several studies that report that property values are not affected by nearby wind farms, in the 

UK (Sims et al., 2008), USA (Carter, 2011; Castleberry & Greene, 2018; Hoen et al., 2011; 

Lang et al., 2014; Laposa & Mueller, 2010), and in Ashhurst, New Zealand (McCarthy & Balli, 

2014). 

Our study will explicitly test for the impact of population density on the property value change 

when wind farms are announced or built. We believe this to be one possible explanation of the 

differences in the previous literature. We will also test the hypothesis that earlier wind power 

developments used land where the impacts on the population would be smaller. If that is true, 

and developers are now using land that has a higher opportunity cost, this could be traceable in 

our data set. 

https://www.sciencedirect.com/science/article/pii/S0313592619300347?casa_token=TQlxhqbLeW8AAAAA:-hokIbC228zHB7Hr6XZrsTYhx8PcXDtm2ByOqoEU9SBeEncrSd_Se3KfjfAmpYCopFSkGz4hCew#b37
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4. Meta-regression analysis  

We use a meta-regression analysis to examine which variables are of importance when 

estimating the effect of wind power plants on property values. A meta-regression analysis is a 

statistical method that combines the results of related studies to investigate study-to-study 

variation (Stanley, 2001). Consequently, meta-analysis has become a conventional tool to 

summarize existing evidence in a research field while providing crucial information to calibrate 

key parameters (Havránek et al., 2020). 

4.1. Data  

For the meta-analysis, we collected information from 20 studies, which provided 169 estimates 

of the effect of distance to wind turbines, in the form of distance bands, on property values. We 

conducted a literature search through the search engine Google Scholar using the following 

search terms: Wind power, property values, and real estate. To ensure that no relevant studies 

were excluded, we went through a literature review by Parsons and Heintzelman (2022) and 

used backward snowballing, where we looked at the reference lists of the included papers to 

identify additional studies. This increases our sample with four studies. 

We used a number of selection criteria to ensure comparability between included studies. 

Firstly, we only included studies that used hedonic price models with semi-logarithmic 

functional form. Secondly, the sample was restricted to studies examining the effect on actual, 

and not perceived, property values. This led to the exclusion of one study. Thirdly, we want to 

restrict our sample to one measurement for wind turbine disturbance. Distance is the most 

common measurement, as it is expected to incorporate other disturbance effects, such as noise, 

view, and flicker. Thus, it is favorable to use distance bands, instead of inverse distance, as it 

allows us to estimate the effect at different distances and when the effect, if any, increases or 

diminishes. By only including studies using distance bands as measurements for wind turbine 

disturbance, five studies were excluded. 

The included studies are summarized in Table 1, which shows the studied county, time period, 

sample size, and general findings of each study. Number of estimates from each study that are 

included in our meta-analysis is also presented in Table 1, where we differentiate between 

estimates based on full sample observations, under “Full”, and estimates based on sub-samples, 

under “Sub”. 
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Table 1: Studies included in the meta-analysis 

Study Country Years Sample size 
General 

finding 

Incl. estimates 

Full Sub 

Carter (2011) US 1998–2010 1,298 ∅ 3 3 

Hoen et al. (2011) US 1996–2007 7,459 ∅ 16  

Heintzelman & Tuttle (2012) US 2000–2009 11,3311 ↓,∅  20 

Lang et al. (2014) US 2000–2013 48,557 ∅ 8  

Vyn & McCullough (2014) Canada 2002–2010 7,0042 ∅ 3  

Gibbons (2015) 
England & 

Wales 
2000–2012 1,710,293 ↓ 12  

Hoen et al. (2015) US 1996–2012 51,2763 ∅ 4  

Dröes & Koster (2016) Netherlands 1985–2011 2,219,0884 ↓ 1  

Hoen & Atkinson-Palombo 

(2016) 
US 1998–2012 122,198 ↓ 2  

Sunak & Madlener (2016) Germany 1992–2010 2,141 ↓ 5  

Sunak & Madlener (2017) Germany 1992–2010 1,405 ∅ 5  

Jensen et al. (2018) Denmark 2003–2010 93,7575 ↓,∅  7 

Vyn (2018) Canada 2002–2013 22,1596 ↓,∅ 12 24 

Skenteris et al. (2019) Greece 2006–2016 1,8167 ↓,∅  4 

Sampson et al. (2020) US 2001–2017 13,196 ∅ 3  

Dröes & Koster (2021) Netherlands 1985–2019 3,389,780 ↓ 1  

Jarvis (2021) UK 1995–2020 8,100,000 ↓,∅ 5  

Joly & De Jaeger (2021) Belgium 2004–2016 207,7768 ↓ 6 12 

Westlund & Wilhelmsson 

(2021) 
Sweden 2013–2018 97,229 ↓ 9  

Eichholtz et al. (2023) Netherlands 1985–2015 ~2,300,0009 ↓ 4  

Note: Where ∅ and ↓ specify the general findings: ∅ indicate no effect and ↓ indicate a price decline.  

As shown in Table 1, the included studies were published between 2011 and 2021 and use data 

from 1985 to 2020. Looking at the general findings, the included studies either find a negative 

effect or no effect on residential prices. One interesting pattern is that recent studies more often 

find a negative effect, potentially since wind turbines are often built closer and closer to 

residential areas as wind power production expands or because more recent wind turbines are 

higher and have larger blades, thus leading to higher visual and noise disturbances within the 

same distance. Further, data and methodological choices could also affect the change in general 

findings. 

 
1 11,331 is the total number of observations used in Heintzelman and Tuttle (2012). However, their sample is 

divided into three markets: Clinton County, 6,142 observations, Franklin County, 3,251 observations, and Lewis 

County, 1,938 observations. 
2 The authors divided these into two sub-samples: rural residential houses, 5,414 observations, and farmland, 

1,590 observations. In this paper, we include the estimates for residential properties. 
3 Out of these, 38,407 observations are included in the relevant model, which is a spatial error model (SEM). 
4 357,745 of these are used for their baseline estimate. 
5 The study divides the observations into onshore, 87,415, and offshore, 6,342, observations. Further, of the 

onshore observations, 69,083 are primary homes, while 18,332 are secondary. For the offshore observations, 4,323 

are primary homes and 2,019 are secondary. 
6 19,683 sales are in areas opposed to wind farms, while 2,476 sales are in unopposed areas. 
7 Out of these, 400 properties are in Evia and 1,416 in Kefalonia. 
8 83,241 in West Flanders and 124,535 in East Flanders. 
9 1,196,458 of these are included in the relevant model. 
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The effect size estimates of each study are summarized in the boxplot in Figure 1. The sample 

mean is shown by the (gray) vertical line. The boxes denote the interquartile range (P75–P25), 

while dots reflect outlying observations within a study. 

 
Figure 1: Boxplots of the estimated effect of wind turbines on property values 

Note: The sample mean is shown by the (gray) vertical line. The boxes denote the interquartile range (P75–P25), 

while dots reflect outlying observations within a study. 

As shown in Figure 1, the estimates vary both within and between studies. Even though Table 

1 shows that the more recent studies generally find a more negative effect, it is not as distinctly 

shown in Figure 1. One reason can be, that even though we can find positive estimates in recent 

studies, the positive estimates generally are less significant than the negative. One evident trend 

is that the confidence intervals become narrower over time, which can indicate better data is 

available or that more refined methodical choices are made (Parsons & Heintzelman, 2022; 

Schütt, 2024).   

4.2. Effect size measures 

In this meta-analysis, the included studies use semi-logarithmic regression equations with 

distance bands to capture whether, and to what degree, wind turbines affect property prices. As 

distance bands are dummy variables, the estimated coefficient cannot be interpreted as the 

percentage change. Halvorsen and Palmquist (1980) explain that as dummy variables are 

dichotomous variables, their coefficient measures the dichotomous effect of a factor's 
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existence, operationalized by the dummy variable, on the dependent variable.10 The coefficient 

of a dummy variable, 𝑐, can be interpreted as ln (1 + 𝑔), where 𝑔 is the relative effect on the 

dependent variable. Thus, the relative effect is 𝑔 = 𝑒𝑐 − 1, and the percentage effect is: 

100 ∗ (𝑒𝑐 − 1)  (1) 

where 𝑐 denotes the coefficient estimate.  

We apply the calculation in Equation 1 to adjust the estimates of the included studies. However, 

for onshore wind farms, Jensen et al. (2018) estimate the effect of the number of turbines within 

a distance band.11 Similarly, Jarvis (2024) estimates the effect of added capacity within 

different distance bands. Thus, they use continuous, and not dichotomous, variables. Instead of 

using the adjustment in Equation 1, these estimates are multiplied by 100. As the main effect 

measured in these estimates is the number of turbines or added capacity, rather than the 

distance, they might have a distorted effect on our results. Nevertheless, these 10 estimates, 

which are based on continuous variables, either have distance bands that cover 2 or 3 km each, 

and will thus only be included in our sensitivity analysis. There are also other studies measuring 

the effect view and/or number of turbines while simultaneously measuring the distance effect, 

using interaction terms. 

4.3. Publication bias 

One factor that might influence published estimates, except for the choice of data, 

methodological choices, and model specifications, is publication bias. Publication bias occurs 

when researchers or journals reject findings based on the effect’s direction, magnitude, or 

statistical precision, resulting in a skewed representation of reality in the literature. The 

presence of publication bias can be tested in a funnel plot. A funnel plot is a scattered diagram, 

where the effect size is measured against its precision, such as the inverse of the standard errors. 

If no publication bias is present, the true effect should be mirrored by the most precise 

estimates. Moving down the figure, the less precise estimates should be more spread out but 

should still be symmetrically distributed around the true mean, creating an image of an inverted 

funnel.  

Figure 2 shows the funnel plot for the included estimates in this study. However, to make the 

funnel plot clearer, one outlier with a percentage change exceeding 100% is excluded. The 

funnel plot also includes two vertical gray lines; the solid line indicates the mean percentage 

change in the included estimates while the dashed line shows at which point no effect occurs, 

i.e., where the percentage change is equal to zero. 

 
10 Where a semi-logarithmic regression equation with a single dummy variable, i.e., ln 𝑌 = 𝑎 + ∑ 𝑏𝑖𝑋𝑖𝑖 + 𝑐𝐷, can 

be written as 𝑦 = (1 + 𝑔)𝐷 exp(𝑎 + ∑ 𝑏𝑖𝑋𝑖𝑖 ) (Halvorsen & Palmquist, 1980). 
11 However, for offshore wind farms, Jensen et al. (2018) estimate the effect of distance bands, without including 

the amount of wind farms. 
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Figure 2: Funnel plot 

Note: the solid gray line indicates the mean percentage change in the included estimates, while the dashed gray 

line shows at which point no effect occurs, i.e., where the percentage change is equal to zero. 

Figure 2 shows that the estimate with the most and next to most precision lies between the 

sample mean and no effect, followed by three estimates around zero, two of which are slightly 

positive. Looking at the less precise estimates, from around 200 and down, an inverted funnel 

is created around the mean, but it is a bit more scattered to the left. However, the largest outliers 

are to the right, with the highest above 100%, which have been excluded in the funnel plot. The 

funnel plot indicates that there likely is a publication bias towards publishing negative 

estimates. 

4.4. Moderator variables 

In the meta-analysis, our dependent variable is the estimated percentage price change, as it 

facilitates a clearer understanding of how proximity to wind power plants is associated with 

variations in property values, compared to the estimated coefficient. To understand study-to-

study variation we include explanatory variables for (1) distance, using distance bands; (2) 

whether the estimate measures the construction or announcement effect; (3) population density; 

(4) mean year for construction or announcement, depending on which effect being measured; 

and (5) whether the estimate is significant at 10% level. Table 2 summarizes the definitions 

and basic descriptive statistics for our dependent and independent variables. The variable 

definitions and descriptive statistics are included in Table 2. 
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Table 2: Variable definitions and descriptive statistics 

Variables Definition Mean Std. dev. Min Max Obs 

𝑒𝑠𝑡 Estimated price change -0.017 0.111 -0.302 0.74 169 

∆𝑃𝑟𝑖𝑐𝑒 Percentage price change -0.963 13.401 -26.067 109.594 169 

0-1 km Distance band, 0-1 km 0.142 0.35 0 1 169 

1-2 km Distance band, 1-2 km 0.082 0.276 0 1 169 

2-3 km Distance band, 2-3 km 0.083 0.276 0 1 169 

3-4 km Distance band, 3-4 km 0.053 0.225 0 1 169 

> 4 km Distance band, > 4 km 0.266 0.443 0 1 169 

𝑃𝑜𝑠𝑡𝐶𝑜𝑛 

Dummy, 1 if the observation 

measures construction, and not 

announcement, effects 

0.657 0.476 0 1 169 

𝑌𝑒𝑎𝑟 
Construction or announcement 

year 
2007.537 4.146 1997 2015.133 169 

𝑃𝑜𝑝𝐷𝑒𝑛𝑠 Population density 169.92 182.499 5.047 533.436 169 

𝑆𝑖𝑔10 
Dummy, 1 if the estimate is 

significant at a 10% level 
0.45 0.498 0 1 169 

 

Our dependent variable is ∆𝑃𝑟𝑖𝑐𝑒, which is the percentage price change in property values, 

which is a transformed version of the estimate, 𝑒𝑠𝑡, in accordance with equation (1).  

Our main explanatory variables are the distance bands. In our main model, the distance bands 

are 0–1 km, 1–2 km, 2–3 km, 3–4 km, and more than 4km, as we want to use distance bands 

that are short enough to capture changes in the estimated effect while being long enough to 

include a sufficient number of estimates. Using distance bands at 1 km each gives us enough 

distance bands to examine how the effect changes while including the majority of all estimates 

in our regression. However, not all observations are included in these distance bands as some 

of the included studies use larger distance bands, such as 0–2 km or 0–3 km (e.g., Gibbons, 

2015; Sampson et al., 2020). Because of this, we also use larger distance bands in our sensitivity 

analysis.  

As the included observations either examine the announcement effect or the construction effect, 

we include a dummy for post-construction, called 𝑃𝑜𝑠𝑡𝐶𝑜𝑛. As shown by Table 3, about 67 

percent of the included observations examine the post-construction, i.e., construction effect, 

while the remaining 29 percent examines the post-announcement and pre-construction period, 

i.e., announcement effect. 

We include the variable 𝑌𝑒𝑎𝑟 to account for the period in which the price change was 

estimated. As each of our estimations is the mean price change within a specific area, we use 

the mean announcement or construction year for that area. When sub-samples are used the 

mean announcement or construction year is calculated for that sub-sample, and otherwise, it is 

calculated for the whole sample. We primarily collect information on announcement and 

construction year from each study. However, when this information is not included in a study, 

the variable is estimated based on available information on wind turbines in the area.  
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Population density (𝑃𝑜𝑝𝐷𝑒𝑛𝑠) is used to examine whether differences in the included study’s 

findings can be accounted for by differences in population density, and thus if the effect of 

wind turbines is higher in densely populated areas. Hence, it also helps us control for noise in 

the data. Similarly to 𝑌𝑒𝑎𝑟, we primarily use information from the included studies. However, 

if a study does not provide information on the population density in the study area, we collect 

this information for the announcement or construction year, depending on the effect being 

studied. Lastly, 𝑆𝑖𝑔10 accounts for whether the estimate, which we include as an observation, 

is significant. As shown in Table 3, this is true for almost half of our sample. 

4.5. Econometric specification 

As there are small varieties between the distance bands used in the included studies, it is 

possible that multiple observations from one study can be included in the same distance band. 

Estimates from the same source might be correlated, and when several observations from the 

same paper are used for the same variable, heteroscedasticity might occur. If an OLS model is 

used, this heteroscedasticity might lead to biased and inefficient estimates. Nevertheless, we 

employ a fixed effect model and treat the study effects as a unit-specific constant effect. Thus, 

we specify the following meta-analysis fixed-effect regression model, with robust standard 

errors: 

∆𝑃𝑟𝑖𝑐𝑒𝑖𝑗 = 𝜇𝑗 + ∑ 𝛽𝑘𝐷𝑖𝑠𝑡𝐵𝑎𝑛𝑑𝑠𝑘𝑖𝑗

𝐾

𝑘=1

+ 𝛽𝐾+1𝑃𝑜𝑠𝑡𝐶𝑜𝑛 + 𝛽𝐾+2𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑗

+ 𝛽𝐾+3𝑌𝑒𝑎𝑟𝑖𝑗 + 𝛽𝐾+4𝑆𝑖𝑔10𝑖𝑗 + 𝜀𝑖𝑗 

 (2) 

where i indexes each included estimate and j indexes the individual study. ∆𝑃𝑟𝑖𝑐𝑒𝑖𝑗 is the 

percentage change in property prices, with respect to a set of 𝐾 distance bands, 𝐷𝑖𝑠𝑡𝐵𝑎𝑛𝑑𝑠𝑘𝑖𝑗. 

We include four distance bands in the main model: 0–1 km, 1–2 km, 2–3 km, and 3–4 km, 

which are estimated relative to the excluded dummy >4 km. The model also includes a set of 

control variables, 𝑃𝑜𝑠𝑡𝐶𝑜𝑛 if it is the construction, and not announcement, effect that is 

estimated, 𝑃𝑜𝑝𝐷𝑒𝑛𝑠𝑖𝑗 is the population density in the studied area, 𝑌𝑒𝑎𝑟𝑖𝑗 is mean 

construction, or announcement, year, and 𝑆𝑖𝑔10𝑖𝑗 indicates whether the estimate is significant 

at, at least, 10 % level. Lastly, 𝜇𝑗 is the group effect, and 𝜀𝑖𝑗 is the classical error term.  

5. Empirical results 

Table 3 presents the results from our fixed-effects model, where our dependent variable is the 

percentage change in property prices. We include both full and sub-sample estimates in our 

main estimation, in order to account for within-study variations for construction/announcement 

year and population density. 
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Table 3: FE model, percentage change, estimates based on full and sub-samples 

 (1) (2) (3) (4) (5) 

      

0–1 km  -8.554*** -8.554*** -8.545*** -8.589*** -7.898*** 

 (1.957) (1.967) (1.984) (2.022) (1.820) 

1–2 km -6.506*** -6.506*** -6.501*** -6.526*** -5.566*** 

 (0.685) (0.688) (0.697) (0.705) (0.862) 

2–3 km -4.602* -4.602* -4.596* -4.622* -3.662 

 (2.201) (2.213) (2.225) (2.234) (2.337) 

3–4 km -5.378*** -5.378*** -5.374*** -5.394*** -4.878*** 

 (0.797) (0.801) (0.806) (0.810) (0.980) 

PostCon  -0.349 -0.348 -0.480 -0.073 

  (1.121) (1.127) (1.209) (1.158) 

PopDens   -0.011*** -0.011*** -0.012*** 

   (0.001) (0.001) (0.001) 

Year    0.381 0.213 

    (0.638) (0.662) 

Sig10     -2.303* 

     (1.141) 

Constant 0.830 1.046 3.124** -761.682 -424.249 

 (0.592) (1.150) (1.138) (1,280.680) (1,328.927) 

      

Observations 105 105 105 105 105 

Adjusted R2 0.274 0.267 0.264 0.258 0.297 

Note: ***, **, and * indicate significant p-values at the 1 %, 5 %, and 10 % level, respectively. Standard errors 

are presented in parentheses. 

As shown in Table 3, there is a significant and negative effect for all distance bands, relative 

to properties more than 4 km away from wind turbines. For properties within 0–1 km from a 

wind turbine, there is a more negative effect size of about 7.9–8.6 percentage points, compared 

to properties further than 4 km from a wind turbine. For the remaining distance bands, the 

negative size effect is 6.5 percentage points for properties within 1–2 km, 3.6–4.6 percentage 

points for properties within 2–3 km, and 4.9–5.4 percentage points for properties within 3–4 

km. So, generally, the impact is greater the closer the property is to the wind turbine. Further, 

there is a decrease in significance for the 2–3 km distance band and the effect seems to be larger 

for properties within a distance of 3–4 km from a wind turbine. This might be explained by the 

fact that there are fewer observations for the 3–4 km distance band, as shown by the mean in 

Table 2, and thus it is based on estimates from a smaller set of studies. 

Table 3 also shows a negative and significant effect of higher population density. Put more 

precisely, in study areas with one more inhabitant per km, a more negative effect of 0.01 

percentage points is found. This finding is in line with our hypothesis, that population density 

impacts the effect of wind turbines. For our other hypothesis, that wind power development 

avoids areas with other competing values, we do not find a significant effect. If anything, there 

is a positive effect on construction or announcement year. However, the variable is based on 



 

12 

 

the mean announcement or construction year. For short time periods or for an area with very 

few wind turbines the mean year might be a good indication of announcement or construction 

year. However, for studies examining the effect in entire countries or for a very long period, it 

might not be an as strong indication. 

Studies analyzing the construction effect, compared to the announcement effect seem to find a 

slightly more negative effect on property prices. However, this effect is not significant. So, the 

announcement of a wind turbine being constructed in the future seems to affect property prices 

to the same degree as the wind turbine being constructed. 

Lastly, significant estimates also find a more negative effect of about 2.3 percentage points, as 

shown in Table 3. As the general effect seems to be more negative for significant estimates, we 

want to know the effect size for different distance bands. Thus, we estimate the effect of wind 

turbines on property prices using only significant estimates in Table 4.  

Table 4: FE model, percentage change, significant estimates: 

 (1) (2) (3) (4) 

     

0–1 km  -12.214*** -12.067*** -12.600*** -12.715*** 

 (2.054) (2.730) (2.407) (2.487) 

1–2 km -7.663*** -7.545*** -7.424*** -7.512*** 

 (0.313) (0.690) (0.851) (0.874) 

2–3 km -6.173** -6.006** -5.940** -6.065** 

 (2.089) (1.973) (1.958) (1.940) 

3–4 km -6.488*** -6.345*** -6.471*** -6.579*** 

 (0.377) (0.857) (0.776) (0.819) 

PostCon  0.285 0.029 -0.187 

  (2.020) (1.850) (1.914) 

PopDens   -0.044*** -0.045*** 

   (0.009) (0.009) 

Year    0.953 

    (0.646) 

Constant 0.703*** 0.403 9.129** -1,905.810 

 (0.041) (2.131) (3.205) (1,295.073) 

     

Observations 49 49 49 49 

Adjusted R2 0.336 0.321 0.364 0.353 

Note: ***, **, and * indicate significant p-values at the 1 %, 5 %, and 10 % level, respectively. Standard errors 

are presented in parentheses. 

The effect size is more negative of 12–12.7 percentage points for properties within 0–1 km, 

7.4–7.7 percentage points for properties within 1–2 km, 5.9–6.2 within 2–3 km, and 6.3–6.6 

within 3–4 km, relative to properties more than 4 km from a wind turbine, as shown in Table 

4. Thus, when significant estimates are used, the effect size is more negative for the four 

distance bands compared to when all estimates are included in Table 3, which finds a negative 

effect size of 7.9–8.6, 6.5, 3.6–4.6, and 4.9–5.4 percentage points, respectively.  
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Similar results are found for population density, which remains negative and significant when 

only significant estimates are included. There is also a more negative effect size of 0.044–0.045 

percentage points, as shown in Table 4, compared to 0.011 in Table 3. The year variable is still 

insignificant, with a more positive effect. Lastly, there is still no significant effect of measuring 

construction year, compared to announcement year, and this variable is positive before year is 

controlled for, when it becomes negative. 

5.1. Sensitivity analysis 

To test the robustness of our estimations we conduct two sensitivity analyses. Firstly, we 

estimate our model based on full sample observations, in Table 5. By only using full sample 

estimates we decrease the risk that a few studies, with more observation within each distance 

band skew the observations. However, by only including full sample observations we decrease 

the within-study effects for the remaining variables, especially population density and 

construction/announcement year. Secondly, we test the effect of different distance bands in 

Table 6.  

Table 5: FE model, percentage change, estimates based on full samples 

 (1) (2) (3) (4) (6) 

      

0–1 km  -10.528*** -10.528*** -10.528*** -10.528*** -9.777*** 

 (2.060) (2.078) (2.097) (2.117) (2.712) 

1–2 km -7.945*** -7.945*** -7.945*** -7.945*** -7.416*** 

 (1.079) (1.088) (1.098) (1.109) (1.183) 

2–3 km -4.047 -4.047 -4.047 -4.047 -3.296 

 (4.335) (4.374) (4.414) (4.456) (4.350) 

3–4 km -7.332*** -7.332*** -7.332*** -7.332*** -6.928*** 

 (1.174) (1.184) (1.195) (1.207) (1.233) 

PostCon  0.070 -0.002 -0.713 -0.453 

  (0.840) (0.833) (0.602) (0.743) 

PopDens   2.305** 0.930 0.983 

   (0.766) (1.460) (1.422) 

Year    0.995** 0.884** 

    (0.340) (0.385) 

Sig10     -1.335 

     (2.195) 

Constant 1.539* 1.485 -500.985** -2,198.039*** -1,988.071*** 

 (0.752) (1.193) (166.406) (526.212) (634.874) 

      

Observations 61 61 61 61 61 

Adjusted R2 0.295 0.282 0.272 0.267 0.263 

Note: ***, **, and * indicate significant p-values at the 1 %, 5 %, and 10 % level, respectively. Standard errors 

are presented in parentheses. 

When only full sample estimates are included, three out of four distance bands remain 

significant, as shown in Table 5. There is a negative size effect of 9.8–10.5 percentage points 
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for properties within 0–1 km, 7.4–7.9 percentage points for properties within 1–2 km, and 6.9–

7.3 within 3–4 km, and an insignificant effect of 3.3–4 percentage points within 2–3 km, 

relative to properties more than 4 km from a wind turbine. These size effects for properties 

within 1–2 and 3–4 km are similar to those when only significant estimates are included, in 

Table 4, while the effect on properties within 0–1 km from wind turbines are somewhere in-

between previous results, in Table 3 and Table 4. 

The post-construction variable is still insignificant and negative in most estimations. 

Population density, however, is now positive and significant before controlling for year. Mean 

construction/announcement year becomes significant when only full sample estimates are 

included and have a positive effect size of almost 1 percentage point. One reason for deviating 

results might be that when sub-samples are excluded, we do not get as much within-study 

variation. For example, when sub-samples are included, population density is compared 

between different areas. However, when sub-samples are excluded, the only variation is 

between years, if the study measures announcement as well as construction effects, which is 

fairly stable. 

We estimate the effect for different distance bands in Table 6. Columns (1) and (2) include the 

distance bands 0–2 km, 2–4 km, and 4–6 km, relative to properties more than 6 km away from 

a wind turbine. Columns (3) and (4) include distance bands for 0–3 km and 3–5 km, relative to 

more than 5 km, and columns (5) and (6) include distance bands for 0–4 km and 4–8 km, 

relative to more than 8 km. Lastly, columns (7) and (8) include the distance band 0–5 km, 

relative to more than 5 km to the nearest wind turbine. In order to decrease the number of 

estimations, we only include distance bands in column (1), (3), (5), and (7), and include all 

variables in column (2), (4), (6), and (8). 

In Table 6, it is evident that distance bands lose significance when larger distance bands are 

applied. The coefficients are still negative for the lower distance bands, e.g., 0–2 km and 2–4 

km in columns (1) and (2) and 0–4 km in columns (5) and (6). Looking at the other variable, 

post-construction is insignificant and positive, while construction/announcement year is 

omitted. Population density is negative in most estimations and significant in one. In column 

(4), where population density has a significant effect, the negative effect size is similar to the 

effect size found in our main model, of 0.01 percentage points. Lastly, significant estimates are 

negative and significant, indicating that a more negative effect of 2.1–3.8 percentage points is 

found for significant estimates. 
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Table 6: FE model, percentage change, different distance bands, and estimates based on full 

and sub-samples 

 (1) (2) (3) (4) (5) (6) (7) (8) 

         

0–2 km  -4.2666 -4.0468       

 (3.3849) (3.2468)       

2–4 km -1.1620 -1.1752       

 (3.2256) (3.0804)       

4–6 km 2.4696 1.7658       

 (3.9388) (3.8447)       

0–3 km   -3.3511 -2.6754     

   (2.2205) (2.0139)     

3–5 km   -0.8347 -0.8778     

   (1.9287) (1.8677)     

0–4 km     -3.9580 -3.6288   

     (3.0445) (2.7364)   

4–8 km     0.5697 -0.4388   

     (3.0813) (2.8180)   

0–5 km       -3.0054 -2.3635 

       (1.7654) (1.4484) 

PostCon  0.5670  0.6483  0.7941  0.2094 

  (1.2615)  (1.1059)  (1.2149)  (1.3111) 

PopDens  -0.0080  -0.0100***  -0.0052  0.1091 

  (0.0046)  (0.0033)  (0.0096)  (0.0747) 

Year  -  -  -  - 

         

Sig10  -2.1010*  -3.4855**  -3.8460**  -3.8510 

  (1.0472)  (1.2913)  (1.5705)  (2.2445) 

Constant -0.7701 1.3947 -0.8255 1.7788 -0.2203 2.0153 -0.9936 -12.3582 

 (2.7725) (3.1473) (1.5320) (1.7465) (2.6209) (2.7682) (0.7519) (7.7524) 

         

Observations 121 121 137 137 137 137 54 54 

Adjusted R2 0.162 0.171 0.0564 0.119 0.0759 0.140 0.0471 0.116 

Note: ***, **, and * indicate significant p-values at the 1 %, 5 %, and 10 % level, respectively. Standard errors 

are presented in parentheses. Columns (1) and (2) include the distance bands 0–2 km, 2–4 km, and 4–6 km, relative 

to properties more than 6 km away from a wind turbine. Columns (3) and (4) include distance bands for 0–3 km 

and 3–5 km, relative to more than 5 km, columns (5) and (6) include distance bands for 0–4 km and 4–8 km, 

relative to more than 8 km, and columns (7) and (8) include the distance band 0–5 km, relative to more than 5 km 

to the nearest wind turbine. Columns (1), (3), (5), and (7) only include distance bands in column, while all 

variables are included in columns (2), (4), (6), and (8). 
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6. Conclusion 

In this paper, we use a meta-analysis to examine the effect of wind turbines on property values 

found in previous research, using distance bands. In our main regressions, we include distance 

bands for properties within 0–1 km, 1–2 km, 2–3 km, and 3–4 km from a wind turbine, relative 

to properties more than 4 km from the nearest wind turbine and find negative effect sizes for 

all distance bands. The negative effect size generally decreases the further away the property 

is from the wind turbine and the distance band for properties within 3–4 km becomes 

insignificant in some estimations.  

We find negative effect sizes of 7.4–12.7 percentage points for properties within the 0–1 km 

distance band, 6.5–7.9 percentage points for 1–2 km, 3.3–6.2 percentage points for 2–3 km, 

and 4.9–7.3 percentage points for properties between 3 and 4 km from a wind turbine, relative 

to more than 4 km. When larger distance bands are used, in our sensitivity analysis, we no 

longer find any significant effect on property values, indicating that the distance bands should 

not be larger than 1 km each when estimating whether, and to what degree, property prices are 

affected by wind turbines. 

We also test for two hypotheses: (1) the effect on property prices should be larger for later 

construction and announcement year, as earlier wind power developments avoided areas with 

other competing values; (2) the effect on property prices should be higher in more populated 

areas. We find no support for our first hypothesis, as there is no significant effect of mean 

announcement/construction year. Regarding the second hypothesis, however, we find that 

studies conducted in more populated areas find more negative effects on property prices. Put 

more precisely, in study areas with one more inhabitant per km, a more negative effect of 0.01 

percentage points is found. 

Our findings have important implications for both future research and policy. Firstly, our 

results highlight the need for further investigation into how population density moderates the 

relationship between wind turbines and property values. Secondly, while our meta-analysis 

explicitly examines wind turbine disturbance through distance bands, the effect of other 

potential disturbance measurements are not analyzed. Thus, future meta-analyses should 

consider incorporating alternative measures, such as view or number of turbines, to provide a 

more comprehensive understanding of how wind turbines influence property values. 

From a policy perspective, our findings suggest that if compensation schemes are implemented 

for property owners near newly announced or constructed wind, both distance and population 

density should be taken into account. Given that we observe more negative effects in study 

areas with higher population density, policymakers may need to design compensation 

structures that reflect not only proximity to turbines but also the characteristics of the 

surrounding area.  
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