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Abstract

Rota and Laitila (2015) suggest an alternative two-step calibration estimation re-
sulting from combining two calibration estimation approaches, i.e., linear calibra-
tion (Sdrndal and Lundstrém 2005) and propensity score calibration (Chang and
Kott 2008), when the functional form of the response probability is assumed to be
known. The first step focuses on estimating this function and the second step on
estimating the total of a survey variable. This paper extends these previous findings
by deriving an approximate variance expression and suggesting a variance estimator
for the two-step estimator. The paper also justifies the use of sample-level auxil-
iary information in the first step of estimation, deferring the use of population-level

auxiliary information to the second step of estimation.
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1 Introduction

Efficient estimation in surveys affected by nonresponse requires the appropriate use of
auxiliary information. This theme is emphasized by, for example, Rizzo et al. (1996),
Sarndal and Lundstrom (2007), and Brick (2013). Various approaches to accounting for
the negative effects of nonresponse are proposed in the literature, with weighting the units
in the response being one alternative. Auxiliary information can be available at different
levels, such as the sample-level, population-level, or both. When both these levels of aux-
iliary information are available, they offer alternative ways of constructing the auxiliary
vectors (see Estevao and Sarndal 2002). Moreover, the combined use of population and
sample level auxiliary information gives further alternatives when estimating population

characteristics. One such alternative is the estimation in two steps.

A two-step estimation by calibration approach is suggested by, for example, Sarndal and
Lundstrém (2005), with linear calibration acting in both steps. Kott and Liao (2015) also
suggest a two-step calibration estimation approach assuming a known functional form of

the response mechanism.

In two-step estimation, sample-level auxiliary information can be used in the initial ad-
justment to correct for nonresponse bias and population-level auxiliary information in
the final adjustment intended to reduce the sampling variance. One reason for employing
sample auxiliary data for preliminary adjustment is that these data may well capture im-
portant respondent characteristics. For example, if the sample auxiliary data are process
data, they will generally embody information about the nonresponse pattern, which may

be important in correcting for nonresponse bias (e.g., Brick 2013).

Calibration adjustment, initially conceived for correcting sampling errors (Deville and
Sérndal 1992; Deville et al. 1993), is currently one of the most appealing techniques for
nonresponse adjustment. The rationale of calibration is to construct adjustment weights
that replicate known quantities. Several nonresponse-adjusted calibration schemes have

been proposed in the literature, including:

1. Linear calibration (LC) (e.g., Lundstrom and Sdrndal 1999) is derived from a Chi-
square type function that minimizes the distance between the sampling weights and the
calibrated weights. In the absence of nonresponse, this calibration estimator takes the
form of a generalized regression (GREG) estimator (Sérndal et al. 1992). An important
feature of this version of calibration is that it simply relies on the strength of the auxiliary
variables in explaining either variables of interest, the response pattern, or both, without

an explicit need for modeling.



2. Propensity calibration (PC) (e.g., Chang and Kott 2008; Kim and Park 2010; Kott and
Day 2014; Kott and Liao 2015) relies on explicit modeling of the response pattern, that
is, the functional form of the response model is assumed to be known and its parameters

are estimated by means of the calibration principle.

Rota and Laitila (2015) combine these calibration schemes and construct an alterna-
tive estimator of the total Y of a survey variable y by means of two-step estimation in
the presence of sample- and population-level auxiliary information under the assumption
of a known functional form of the response mechanism. In line with this setup, this paper
contributes by deriving an approximate variance expression and suggesting a variance es-
timator for this alternative two-step estimator. Moreover, we demonstrate that the use of
sample-level auxiliary information generally yields more efficient two-step estimator than
does the use of population-level auxiliary information. Simulation studies are carried out

to illustrate the properties of the two-step estimator and its variance.

The rest of the paper is organized as follows: section 2 introduces calibration theory;
the two-step estimator is presented in section 3 and the variance and variance estimator
in section 4; in section 5, we provide arguments justifying the use of sample auxiliary
information in the first step of estimation; the simulation study is presented in section 6

and the results are discussed in the final section.

2 Introduction of calibration estimation

2.1 Notations

Sample s of n elements is drawn from population U = {1,2, ..., k, ..., N} of size N using a
probability sampling design, p(s), that yields the first- and second-order inclusion prob-
abilities m, = Pr(k € s) > 0 and 7 = Pr(k,l € s) > 0, respectively, and g, = 7y for all
k,l € U. Let r C s denote the response set. Units in the sample respond independently
of each other with probability ¢, = Pr(k € r|k € s) > 0. Assume y to be the survey
variable of which we are interested in estimating its total Y = ), ,, y using auxiliary
information defined as:

(a) xb = (2%, 2%, ...,2",)", a J-dimensional vector of known values for all elements k
in the response set r; for each 7 =1,.... J, Tj’j = rU x?k is known. This implies that
T = (1%, TF

t .
T, .., T,)" is also known.

t . .
(b) x§ = (x§), x5k, ..., ¥3,)", an L-dimensional vector of known values for all elements k
. _ . /\S _ S
in the sample set, s. For each [ =1, ..., L, we can estimate t}, = >, _dizj, and compose

. s g o\
the vector &5 = (£5,,1%,,....t5,) .



Unless otherwise stated, the expected value E,E,(A), is written simply as E(A).

2.2 Calibration estimators

Calibration estimators are a class of weighted estimators of the form Ycaz = 1o WEYk,
with weights wy, satisfying the calibration constraint ), wix; = X, where x;, stands for

xP, x5, or x, = ((x7)", (xz)t)t and X corresponds to their respective totals, i.e., TP, #5, or

<(T§)t , (f;)t)t. Papers by Deville and Sirndal (1992) and Deville et al. (1993), bench-
marks in calibration estimation theory, approach calibration in the context of full-sample
responses and their main purpose was the reduction of sampling errors. The approach
was then extended to cases of samples with nonresponse in order to reduce nonresponse
bias (e.g., Singh et al. 1995; Niyonsenga 1997; Lundstrom and Sérndal 1999; Kreuter
and Olson 2011).

The minimum-distance approach to deriving calibration weights aims to determine cal-
ibrated weights as close as possible to the design weights by means of a distance func-
tion, D(w,d). Deville and Sarndal (1992) required the distance D to be positive and
to be the convex function of its arguments, with D(0) = dD(0) = 1, where d stands
for the first derivative. Minimizing D, subject to the above calibration constraint and
using a Lagrange function, leads to calibrated weights of the form wy = diF'(-), where

F~Y(a) = dD(a) and dj, = 1/m,. When D is chosen to be

D(w,d) =Y [d(wy — dy)]” /2, (1)

ker

the calibrated weights are given by wy, = dj, + dig'x;,, which are linear in the coefficient
vector gt = (X — 32, dix)' (34, dixixt) ™', The resulting estimator of ¥, commonly

termed a linear calibration estimator, is given by

Yic = Z dryr + &' Z ApXp Y- (2)

ker ker

Other distance functions will generally produce calibrated weights that are nonlinear in
their coefficients, so deriving the weights may require some iterative procedures. Deville
et al. (1993) provide a set of common distance functions that can be used in generating

calibrated weights.

A direct approach when adjusting for nonresponse is to assume that F(-) is the non-

response adjustment weight and to choose it suitably. The principle is known as re-



sponse propensity, in which F~1(-) is a probability function. The calibration equation
Y wer A F(+)x), = X is employed in estimating the function F'(-). Chang and Kott (2008)
use this principle in constructing the estimator Y,q, with F(-) = F(z.g), where the di-

mension of x;, is no less than that of z, and suggest an iterative algorithm for estimating

g.

3 Calibrating in two steps

Sérndal and Lundstrém (2005) suggest a two-step calibration estimator, here denoted by
Yarc. The first- and second-step weights are constructed according to the principle of
combining population- and sample-level auxiliary information. In the first step, sample-
level information is used to construct intermediate weights, wyy, such that >, wix} =
Y kes dix;. In the second step, weights wiy, replace the design weights in the optimiza-
tion problem that led to calibration estimator (2), and the final weights, woy, satisfy

t
Zker worXy = X, where x; = xi or xj = ((Xi)t 7 (XZ)t) ‘

The two-step estimator suggested by Rota and Laitila (2015) assumes that the functional
form of the response probability is known and is given by ¢, = ¢((x})'g).

In the rest of the paper we use Fj, = F ((x5)'g), Fp = F ((x})'g), and FP = F ((x})'g.),
where g is the generic parameter vector, g, is the true value of g, g is an estimator of g,,
and Fk = 1/qk

Rota and Laitila (2015) define intermediate weights as wyy, = dp Fy, after calculating g in

the first step from the calibration equation Y,  dpFixj = 5. The second-step weights,
way, are derived from the problem ?nn} > ker %
W2k

given by woy, = wixvy, with vy, = 1+ghx} and gh = (T2 — 3, wiexh)’ (X per wixh (x4)")

assuming that >, wpx? (x?)" is invertible. Then, the two-step estimator for the total

subject to T? = >,  worx}, and

Y is given by %step = 1 Woryk. This estimator can be equivalently written as:

t
Yastep = _ diFiyi + <Tf -y dkﬁkxi> By, (3)

ker ker

~ ~ -1 A
where BQFT = (Zker dkaXZ (Xi)t> ka dkaXZyk

-1

I



4 The variance and variance estimator

The following assumptions are used in deriving the variance of the two-step estimator:
(i) The sequence of populations and samples increases to infinity, as in Isaki and Fuller
(1982).

(ii) Function F(-g) is monotonic and continuous for all g in G, with finite first deriva-
tives.

(iii) v = (%}, x5, yx) is nonrandom and ||v|| < oo.

(iv) (Bm . Bg), N-U(TP = Y, diFext) and N71 (85 — 3, dpFExs) are all Op(n”%),
where By = (ZkeU X}, (XZ)t)_l > ke XYk is the population analogous to Bop,.

(v) N°UY, dpxbFS, and N71Y0,  dp Fext (x2)! are O,(1), where, F; = dF/dg.

The bias of the two-step estimator is given by £ (%st@p) -Y=F <(T£ >, dkaXi)tBQFr> ,
which is of order O (Nn_%>.

Given that g is a solution to >,  dyFyxi = £3, we proceed as follows:

St e FiX; = 8 = Sy diFixt — 5+ 0y, dixiFu (g — ) = Op (Nn1). This
leads to equation (4) below:

(& g)=T"'N" (Z dyFox;, — t) o, (1) =0, (n7}) (4)

ker

where T is the probability limit of N~! > ker deZﬁlk, assumed invertible and Flk =

Fix ((x5)'g), with g being a convex combination of g and g.

A first-order Taylor approximation of f/gstep at g, gives:

t
YA'2$tep ~ Z dkF]:yk + (T;f - Z dkaOX]];> B;FT’
ker ker

> dF (& - ge) (s~ (D) Bie, ) + ALY dixFS (& — g2) (s — (<) B,

ker ker
(5)
where AL = N=H (TP = 32, dp Fex)! (NS, di Fex (x2)1) ™ is Op(n2).

Now, as in Estevao and Séarndal (2006), we can replace B, in (5) with <B2 + B, — B2>

and obtain:



Vorep = > eF B+ (TF) By + Y diF5, (8 — g0) B+ R (6)

ker ker

where
R - Zker dkFik (g - go) AtoXkP‘Elf—i_

t /A
[(Tf = D ker dkFlska)t — 2 ker W0, (8 — 80) ka} (BSFT - B2>, vp = 1+ Axy, and
Ek = Y — (Xz)t BQ.
The bias of Y;Step is given by E (Y;’Step> Y = E(} ., dF.EL (g —g)) + E(R), in
which the first term on the r.h.s. is O(Nn~2) and the second is O(Nn™1). Thus, like the
bias of Ygstem the bias of Y

sutep 18 Of order O(Nn~z). Given this, in equation (6), we drop

the lower-order term R and obtain the approximate expression for the two-step estimator
of Y :

Ve = O dFP B+ diFS, (& — g) Ex + (TF) Ba, (7)

ker ker

If we replace (g — o) in (7) with the corresponding expression in (4), we get

Yoier = deFkEk+deF‘{kI‘ <deF,:x2 )EH(T ) Bs + 0,(Nn~2) (8)

ker ker ker

where T = T7'N~'. Let D kied = Dken 2iea and write (8) as

Youtep = Z Rydyp Fy E) + Z Ry(RiFY — 1) Ay + (TF ) B, (9)

kes k,les

~_ t
where Ay, = did; (xf)t (Fj’kl" 1) Ey., and Ry, = 1if k is a respondent; R, = 0, otherwise.

The variance of (3) is approximated by the variance of (9) given by:

Var (Y;Step> = Var(T?) + Var(Ty) + 2Cov <Tbo, T;) : (10)
where T; = Zkes dekF]:Ek and T; = Zk,les (Rl — 1)Akl

The variances on the r.h.s. of (10) are obtained using result 9.3.1 in Sérndal et al. (1992,
p. 348) and given by:

Var(Ty) = Y ue (Mudids — V) BBy + 3 (de FY — 1) EZ,

Vm’( ) Zk;él;ézeU ﬂkl;g;;;vio_l)'AklAil +Zk;ﬁleU Wk}k;;llgﬂl (F}o - 1)<F]: — 1)AkkAll+



TR (FP—1 o 5
2kpieU kl(F,lg_) At e 7o Foe (1= FQ) (L = F7) Ay A+
™ o i (FP —m) (FP—1)2
Zk;ﬁleU Fé’k}é‘lo (1 — FP)2 A A+ =+ (FZ:)Q bl A2

and

Cov (T2, 1) = S S35 ((F = DAw + (F = 1) Awe) Bt Sy (Ff — 1) A By~

T ( Fy

Zk,leU (F° )Ak’fEl

Some details of the derivation of these formulae are given in Appendix. The corresponding

variance estimator is given by:

> 9 [ ]
VCZT' <1/éstep

) = Var(T,) + Var(T,) + 2Cov (Tb, Ta> (11)
where
VCLT(TCL) = Zk;ﬁle’r(dkdl — dkl)ékél + ka dkﬁk(dkﬁk — 1)6%,

Var(Ty) = Y pspier F(F = VAR Ay +3 00 (1 = dumm) (B — 1) (F — 1) A Ay
Zk#ler E(‘ﬁ} - ) A21+Zk¢ler<]‘ - Fk)(]‘ - E)AklAlk +Zk¢ler(]‘ - E)ZAICIAZZ—'_

Fk 1 Fk 7rk 2
Zker Akk’

and

COU (Tb, > Zk;éle ((Fl — 1)Akl -+ (ﬁk — 1)Akk> él_'_Zker dk(pk — 1)Akkék_
S kter (B = 1) A,

A A S - 1 1 n : t
with T — Zk deka;elm Tb = Zk lesR (Rlﬂ — ]_)Akl, Akl = dkdl (Xls)t (Flk]__‘71> €L,

F Eker k;XkFlk, dp = 1/7Tkl> € = erk, and e = yp — (Xk) B2Fr

Note: As the third-order inclusion probability in variance estimator (11) vanishes, the
triple sum involved is easily factorized into a product of double and single sums, making

the computation easier. Below we provide the factorization of this sum:

~

Zk;ﬁl;ﬁier ﬁ}(ﬁ} - 1>AklAzl =
S ster B = D AT %) S, di(Fr) ei— Y e Fi(F— 1) ( A2 4 Ay Au).

O

Remark: The last two terms on the r.h.s. of equation (10) represent the contribution of

8



the variance of the model parameter estimates to the variance of the two-step estimator.
A question may therefore be raised: Is it worthwhile correcting for the uncertainty in

model parameter estimates when estimating the variance of the two-step estimator?

5 Efficiency gain with calibration at sample level

5.1 Efficiency in estimating the model parameters

The principal goal of the first step is the appropriate estimation of the response model.
This is of particular importance in protecting the target estimates against nonresponse

bias. We can formally illustrate this in the following:

Let

H(g) = Y dpFix; — 1 (12)

ker
with E (ﬂ(go)) —0.
From Sérndal et al. (1992) result 9.3.1, the covariance of H(g,) is given by

E <H(go H' (g, ) D di(Fy — D)xp(x})". (13)
keU

We assume that the vector of estimating equations, ﬂ(g) = 0, is uniquely solved for
g = g and consider assumptions (i) and (ii) in section 4. From (4) we observe that the

asymptotic variance of the response model coefficients is given by:

Avar (Vi (&~ g)) = [(M ()] @ [(M (g.))"] (14)

where M (g,) = plimnﬁm%% and ¥ = plim,,_oon ' E (I:I(go)I:It(go)> )

Now, suppose that t7 = ", x7 is known. Then (12) is defined as:

H(g) = S deFix; — £ (15)

ker

with the same properties as before except that
2 2t
B (Bl () = Y dulma— i) + S F} - Uxilxt). (10)

k,leU keU

Using similar arguments as those that led to (14), we have that



Avar (v (g — 2)) = [(M(g)) '] @ [(M (g.)) ]
(17)

+ (M (go)) '] [(M(g:) ]

2 2t
where @ and ¥ are the first and second components of plim,, ,o,n 'F <H(gO)H (go))7

respectively.

The difference between equations (17) and (14) is M (go) = [(M (go))_l} ® (M (go))_l},
which is a positive definite matrix, unless it is a case of census. This illustrates that (12)

is more appropriate than (15) in the first step of estimation.

5.2 Efficiency in estimating the total Y

Let g be the solution to H(g) = 0 and Yy

2step

= T2+ T2(g — go) + (TF) By is the
corresponding equation (7) when g is replaced with é Furthermore, if g, is uncorrelated
with either T; = b Ak FP By or Tf = 1o A FS Ex, where g, stands for g or g, Tf is

a non-zero vector, and given that E(g, — g,) — 0 (see equation 4), we have that
Var (%’smp> —Var (YQ.step> =

Var (Tf(é - go)) — Var (Tg’(é - go)> +2Cov (Ta T) (E(g ) - E@ - go)>=
E(To(& —go)(& — )T ) — B (12(8 — 8)(8 — 8o) T2 )= (1M () T71) > 0.

Thus, the efficiency loss of g resulting from calibrating with population-level auxiliary

information implies efficiency loss of the two-step estimator (3).

6 Simulations

Two simulation studies were performed to illustrate the properties of the two-step esti-

mator and its variance. In the following, we describe the setup of each simulation study.

6.1 The setup
6.1.1 Study 1

We used data from a real estate survey with 4228 sampled elements of which 1783
were nonrespondents. We selected five variables from the study. A categorical vari-

able that was a stratum indicator in the original six-strata study is denoted by v, =

10



(Yiks Voks V3ks Vaks Yok Yor ), Where v, = 1(keS;) and S; is the " stratum. Three numeri-
cal variables denoted x1, x2, and z were transformed into logarithmic scales to reduce the
variability, with the first two being used as benchmarks and the last as a model variable.
Another numerical variable, y, was left untransformed and is the study variable. Here,

the estimation concerned estimating the population total, Y.

We performed a logistic regression fit of R to a constant and z, and the resulting model
was used as the true response probability function. Here, R is a dichotomous variable
of 1/0, i.e., respondent /nonrespondent. The true response probabilities obtained using
the model were then attached to the respective elements and used for Bernoulli trials to

generate the response sets.

The population consists of the 2445 respondents to the survey and samples of sizes 200,
400, and 600 were selected using simple random sampling without replacement. We as-
sume that the chosen response model is correct, that is, the response probabilities are
estimated according to the equation g, = 1/ (1 + exp(—zLg)), where z; = (1, 2;)" and g
is obtained from the first step of estimation. The benchmark vector was a combination
of v and = given by x; = (7%, zxvt)t, while « stands for x; or z5. The choices of x1, 2,

z, and y were based on their relationships in satisfying the following two cases:

In the first case, the estimator’s performance is analysed when the correlation between
benchmark and model variable is cor(xq,z) = 0.16, while the correlations between the
benchmark/study variable and model variable/study variable are cor(z;,y) = 0.59 and
cor(z,y) = 0.65, respectively. This may be the case when the model and benchmark
variables are obtained from different sources, for example, when model variables are pro-
cess data while the benchmark variables are obtained from administrative registers. The
benchmark variables are selected based on their relationship with the survey variable,
and the model variables are selected with the intention of capturing the response be-
havior. This means that, in general, we do not expect a good relationship between the
model and benchmark variables, although such a relationship is possible. In the second
case, we consider the possibility of having model variables at least moderately correlated
with the benchmark variable and want to observe the impact of this possibility on the
variance of the two-step estimator in relation to the first case. The correlations between
the variables are the following: cor(xs, z) = 0.56, cor(xq,y) = 0.53, and cor(z,y) = 0.65.
Each simulation result was based on 1000 replications. The expected response rate was
approximately 55%. The estimators are evaluated in terms of relative bias (Rel.bias) and

root mean squared error (RMSE).
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6.1.2 Study 2

The previous study was based on real survey data, which are important in empirical
studies because theoretical findings need to be evaluated in real environments. Although
use of real data is important, sometimes freedom to control the environment is desired,
for which simulated data are usually appropriate. Accordingly, this study is based on
simulated population data of size 2445. The estimation setup is as in the former study
except that the variables are generated as follows: =z ~ U (0,1), z = pz + £, where
p is the required correlation between z and z, £ ~ U (0,a), and a = \/1—7p2 The
study variable is given by y = U (0,2) + U (0, z), where ¢; = ¢ = 1 and U is the
uniform distribution. The coefficients ¢; and ¢y can be varied to change the mean of y
and/or balance or unbalance the correlations p,, and p,, between z and y and between
z and y, respectively. The response model is the same as in study 1 except that the
coefficient vector is given by g, = (—1.5, 2.())t. We also created a categorical variable,
Ye = (Vik, Yok, Y3k, Var), Where v = 1(keS;) and S; is the i quartile of x, so that the
benchmark vector is given by X. = (Vik, Yok, V3ks Vaks TkVik, TkY2k, TkY3k, TrYar)'- In the
first case, we have a correlation between x and z of 0.2, between x and y of 0.49, and
between z and y of 0.53, while in the second case these correlations are 0.7, 0.62, and

0.65, respectively.

6.2 Simulation results

Below we present the simulation results of each of the above studies. The simulations
illustrate the ability of the suggested two-step variance estimator to estimate the variance
of the two-step calibration estimator. The variance estimator of the two-step estimator
(Sérndal and Lundstrém 2005) is used as a benchmark in assessing the performance of
our suggested method. The results also enable us to respond to the question raised in
Remark, that is, whether it is important to correct for the variance in model parameter
estimation when estimating the variance of the two-step estimator. In Tables 1-4 below,
Y stands for }A/Q LC Or %step. In each table, Ygstep is followed by two results in the column
“Rel.bias of Var(Y)”, the first of which is the relative bias of the corrected variance

estimator, XA/COT = Var Ygstep), and the second, within parentheses, is the relative bias of

the uncorrected variance estimator, V.., = Var (Ta).

6.2.1 Results of study 1

Table 1 presents the results of the first simulation study when the correlation between

model and benchmark variables is 0.16, while in Table 2 their correlation is 0.56.

12



Table 1: Simulation results of study 1, first case

Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI
size of Y of Y in (%) of Y  Var (Y) in (%) Var (Y) coverage rate

900 YQLC -0.23 194 —25 10627 86

Yostep -0.35 203 03(01) 29915 94

400 i:/gLC -0.16 130 -35 5999 68

Yostep -0.17 131 09 (19) 4950 82

600 5:/2LC -0.09 103 -17 2082 85

Vosten 0.1 106 06 (15) 4325 84

Table 2: Simulation results of study 1, second case

Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI
size of Y of Vin (%) ofY Var (Y) in (%) Var (ff) coverage rate

500 Yare ~0.09 188 -32 15184 61

Yostep -0.19 188 —-17(-21) 13978 64

400 Yare -0.14 123 -36 6011 84

Yostep -0.14 124 —06(-07) 4469 90

600 Yare -0.12 99 -19 2550 84

Ystep -0.14 99 -03(-03) 2487 90

Tables 1-2 present the results of the first simulation study, which is based on real survey
data. The results suggest that the two-step estimator }A/Qstep is almost unbiased, having
generally slightly larger Rel.bias and RMSE than the benchmark. With regard to variance
estimators, the results indicate that the Rel.bias of the corrected ch« and uncorrected
‘Zﬂncor variance estimators are low compared with the benchmark. In Table 1, the biases
of these variance estimators are positive while those of the benchmark variance estimator
are negative. In Table 2, all variance estimators have negative biases. In Table 1, the
RMSE of V,,, is larger than that of the benchmark, except when the sample size (n) is
400, while in Table 2, V.or has smaller RMSE values for all sample sizes. The tables also
show that \7COT has a smaller absolute relative bias than does Vuncor, except in Table 1 for
n = 200 and in Table 2 for n = 600. In Table 2, the Rel.bias values of ‘A/COT and Vuncor are
decreasing in absolute values and converging to the same level. These properties are not
observed in Table 1, however. The estimated confidence interval coverage rates (CICR)
are generally larger for }A/QStep than the benchmark, increasing for both estimators with

increasing sample size, but are less than 95%.

6.2.2 Results of study 2

The results of the second simulation study are shown in Tables 3-4.
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Table 3: Simulation results of study 2, first case

Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI
size of Y of Y in (%) of Y  Var (Y) in (%) Var (Y) coverage rate

900 YQLC -0.22 70 -17 1090 52

Yostep -0.67 71 —09(-04) 1307 67

400 Yare -0.15 50 -18 529 87

Vastep -0.30 50 14 (-01) 474 85

600 Yare -0.08 39 15 261 88

Yostep —0.15 40 -19 (-24) 342 88

Table 4: Simulation results of study 2, second case

Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI
size of Y of Vin (%) ofY Var (Y) in (%) Var (Y) coverage rate

900 YQLC -0.04 83 —25 2045 80

Vaster 0.33 84 09 (-17) 5317 81

400 5:/2,;(; -0.13 63 -33 1338 82

Vastep 0.27 59 07 (-14) 909 88

600 Yare 0.13 46 19 442 91

Yostep 0.07 47 -06(-09) 450 91

Tables 3—4 present the results of the second simulation study based on simulated data.
As in the former study, the two-step estimator }Afgstep is almost unbiased but presenting
slightly larger Rel.bias (except in Table 4 when n = 400) than the benchmark estimator.
Regarding the variance estimators, Table 4 also shows that the Rel.bias of the corrected
VCOT and uncorrected Vumor variance estimators are low compared with the benchmark and
tend to decrease in absolute value with increasing sample size. Furthermore, the relative
biases of these variance estimators tend to converge to the same level. Table 4 also shows
that the RMSE is larger for Veor than for Var(YQLC), except when n = 400, which is the
same behavior in Table 3. The estimated coverage rates for }A/gstep are generally not less
than the benchmark and, for both estimators, tend to increase with increasing sample

size, but remain less than 95%.

7 Discussion

Above we present the illustrative results of the two-step calibration estimator Ygstep. The
results are based on two simulation setups, one based on data from a real estate survey,
the other based on simulated data. The results given in Tables 1-4 indicate that f@step
have very low bias levels, however, tends to have a slightly larger bias than Vs Lo, except

when n = 600 in Table 4, in which case the sign of the bias is positive. The slightly
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large bias for Ygstep than YQ Lc may be because xj, is reused in the second step of the 372 LC
estimator, while the estimator }A/Qstep, uses it only in the first step. One alternative is to
reuse X; in the second step of estimation, which we expect to further reduce the bias of
}/\/QStep. The RMSE values for 372 rc and f@step are generally comparable. To assess the role
of the auxiliary information used here, we have also calculated the expansion estimator,
?Exp (Sdrndal and Lundstrom 2005, p. 68), obtaining relative biases of —7% and 8%
for the first and second studies, respectively. These relative biases are much larger than

those obtained with the two-step estimators under consideration.

In virtually all tables, the Rel.bias of VCOT is smaller in absolute value than the benchmark,
except in Table 3 when n = 600 . The Rel.bias of VCOT is positive in Table 1 and nega-
tive in others, this inconsistency is associated with some very small probability estimates
producing very large weights that influence the estimated entities. When the benchmark
is at least moderately correlated with the model variable, the Rel.bias of Vcor tends to
decrease in absolute value with increasing sample size. The properties mentioned above
are no longer observed when the correlation between benchmark and model variables is
low. Another indicator of the performance of the suggested variance is the estimated
confidence interval coverage rate, which suggests that our proposed variance estimator
works well, as it generally leads to a coverage rate of the point estimator %Step that is no
less than that of the benchmark point estimator. In Tables 2 and 4, the coverage rates

increase with decreasing Rel.bias of V,,,.

Regarding the question in the Remark, the results indicate that, with correlated model
and benchmark variables, it is worth correcting for the uncertainty in model parameter
estimation for small sample sizes in which Vcor tends to have a smaller bias than does
Vuncor; for large samples this correction is less important, as we expect g to be close to
g.. With low correlation between model and benchmark variables, it is not clear whether
or not this correction is important, as we can see in Tables 1 and 3 that some situations

favour V,,, while others favour Vi,,cor.

The overal conclusion is that inferences will be reasonably valid when good benchmarks

are available and not too small samples are considered.

15



References

Brick M (2013) Unit Nonresponse and Weighting Adjustments: A Critical Review. J Off
Stat 29:329-353

Chang T, Kott PS (2008) Using calibration weighting to adjust for nonresponse under a
plausible model. Biometrika 95:555-571

Deville JC, Sarndal CE (1992) Calibration estimators in survey sampling. J Am Stat
Assoc 87:376-382

Deville JC, Sérndal CE, Sautory O (1993) Generalized raking procedures in survey sam-
pling. J Am Stat Assoc 88:1013-1020

Estevao VM, Sérndal CE (2002) The Ten Cases of auxiliary Information for Calibration
in Two-Phase Sampling. J Off Stat 18:233-255

Estevao VM, Séarndal CE (2006) Survey Estimates by Calibration on Complex Auxiliary
Information. Int Stat Rev 74:127-147

Kim JK, Park M (2010) Calibration Estimation in Survey Sampling. Int Stat Rev 78:21-
39. doi:10.1111/3.1751-5823.2010.00099.x

Kott PS, Day CD (2014). Developing Calibration Weights and Standard-Error Estimates
for a Survey of Drug-Related Emergency-Department Visits. J Off Stat, 30:521-532.

Kott PS, Liao D (2015) One step or two? Calibration weighting from a complete list
frame with nonresponse. Surv Methodol 41:165-181

Kreuter F, Olson K (2011) Multiple auxiliary variables in nonresponse adjustment. Sociol
Meth Res 40:311-332

Lundstrém S, Sdrndal C-E (1999) Calibration as a standard method for treatment of
nonresponse. J Off Stat 15:305-327

Niyonsenga T (1997) Response probability estimation. J Stat Plan Infer 59:111-126

Rizzo L, Kalton G, Brick M (1996) A comparison of some weighting adjustment methods
for panel nonresponse. Surv Methodol 22:43-53

Rota BJ, Laitila T (2015) Comparisons of some weighting methods for nonresponse ad-
justment. Lith J Stat 54:69-83

Sarndal C-E, Lundstrom S (2005) Estimation in surveys with nonresponse. Wiley, New
York

Sérndal C-E, Lundstrom S (2007) Assessing auxiliary vectors for control of nonresponse
bias in the calibration estimator. J Off Stat 24:167-191

Sarndal C-E, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer,
New York

Singh AC, Wu S, Boyer R (1995) Longitudinal survey nonresponse adjustment by weight

calibration for estimation of gross flows. In JSM Proceedings, Survey research methods

16



section. American Statistical Association, Alexandria, VA, pp. 390-396. Retrieved from

http://www.amstat.org/sections/srms/proceedings

Appendix

From (9)we have that:
Var (Y' ) = Var(T") + Var(Tp) + 2Cov(TY, T°), where

2step br*a

= s Reu FY By, T = 32 100 Ri(1=RiFP—1) Ay, and Ay = did; (x3)" (F$,T)" By

From Sarndal et al. (1999), Var(T,,) = E,V,(T\) + V, E,(T,,) with T}, standing for T2 or

Ty.

Then,

V(”’(Tbo) = V;?E(Z(Zk,les Ry(RiFY — 1) Aw) + Equ(Zk,les k(R FyY — 1) Aw)

where

V E (Zk les Rk(Rl _1)Akl) P(Zkfs 1;7‘?6 Akk) Zk;éleU ﬂkll:“’g‘lgm (Fo_l)(ﬂo_l)AkkAll+
m(1— TI'k)(FO 1)2 A2

> ke — gk

(Fg2)
and

E V(X pies BBy — 1) Aw) =Epg 3 1 jer (Mi — Eq(Mia)) (Mij — Eq(Mi;))

with My, = I, [, Ry (Rp Y — 1) Agp. This leads to

Equ(Zk,zes Ry(RiFY — 1)Ap) = S1+ So + Sz + 255 + S5,

S1= Zk##ieU PZ,ZLIZ«Z(FZO = D ApAi, S = Zk‘yéleU BHFY = DAR,

S3 =D huw FE_I}I“ZO(l — Fp)(1 = FY) A A, Sy = Zk#EU W(l — FP)? A Ay, and S5 =
> kev ey (FF = 1) A

Where Sy is for l = j, So forl=jand k=1, S3 for k=jand =14, Sy for | =i = 7 and

k=1=j,85 for k=1=1=j, and zero for other index combinations.

Cov(Tp,T2) =

br~*a
pq(zk Jles ( - 1)Akl Zzgs R;d, FOE) qu(Zk,les Rk<RlFlo - 1)Akl) ZieU E; =
Epg(X ok picv di[k]lIiRleRin FPAwE; — dili L Ry R FP Ay Ey ) —
PQ(Zk v Il R A (R EFP — 1) Y, Ei)= C1 4+ Cy + Cs.

where C = Z,#KU m“F—o_l)AkkE e 2 ;OF )Akk Y iy B when k = 1[;

Zk#d] dlm(F ) AklEl, when [ = i; and C3 = Y, (Ff — 1)Ap By when k =1 =i.
Note that >, El E,q(T2).
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