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Abstract

Rota and Laitila (2015) suggest an alternative two-step calibration estimation re-

sulting from combining two calibration estimation approaches, i.e., linear calibra-

tion (Särndal and Lundström 2005) and propensity score calibration (Chang and

Kott 2008), when the functional form of the response probability is assumed to be

known. The first step focuses on estimating this function and the second step on

estimating the total of a survey variable. This paper extends these previous findings

by deriving an approximate variance expression and suggesting a variance estimator

for the two-step estimator. The paper also justifies the use of sample-level auxil-

iary information in the first step of estimation, deferring the use of population-level

auxiliary information to the second step of estimation.

Key words: Two-step, Variance estimator, Calibration, Nonresponse, Auxiliary

information, Response probability.
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1 Introduction

Efficient estimation in surveys affected by nonresponse requires the appropriate use of

auxiliary information. This theme is emphasized by, for example, Rizzo et al. (1996),

Särndal and Lundström (2007), and Brick (2013). Various approaches to accounting for

the negative effects of nonresponse are proposed in the literature, with weighting the units

in the response being one alternative. Auxiliary information can be available at different

levels, such as the sample-level, population-level, or both. When both these levels of aux-

iliary information are available, they offer alternative ways of constructing the auxiliary

vectors (see Estevão and Särndal 2002). Moreover, the combined use of population and

sample level auxiliary information gives further alternatives when estimating population

characteristics. One such alternative is the estimation in two steps.

A two-step estimation by calibration approach is suggested by, for example, Särndal and

Lundström (2005), with linear calibration acting in both steps. Kott and Liao (2015) also

suggest a two-step calibration estimation approach assuming a known functional form of

the response mechanism.

In two-step estimation, sample-level auxiliary information can be used in the initial ad-

justment to correct for nonresponse bias and population-level auxiliary information in

the final adjustment intended to reduce the sampling variance. One reason for employing

sample auxiliary data for preliminary adjustment is that these data may well capture im-

portant respondent characteristics. For example, if the sample auxiliary data are process

data, they will generally embody information about the nonresponse pattern, which may

be important in correcting for nonresponse bias (e.g., Brick 2013).

Calibration adjustment, initially conceived for correcting sampling errors (Deville and

Särndal 1992; Deville et al. 1993), is currently one of the most appealing techniques for

nonresponse adjustment. The rationale of calibration is to construct adjustment weights

that replicate known quantities. Several nonresponse-adjusted calibration schemes have

been proposed in the literature, including:

1. Linear calibration (LC) (e.g., Lundström and Särndal 1999) is derived from a Chi-

square type function that minimizes the distance between the sampling weights and the

calibrated weights. In the absence of nonresponse, this calibration estimator takes the

form of a generalized regression (GREG) estimator (Särndal et al. 1992). An important

feature of this version of calibration is that it simply relies on the strength of the auxiliary

variables in explaining either variables of interest, the response pattern, or both, without

an explicit need for modeling.
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2. Propensity calibration (PC) (e.g., Chang and Kott 2008; Kim and Park 2010; Kott and

Day 2014; Kott and Liao 2015) relies on explicit modeling of the response pattern, that

is, the functional form of the response model is assumed to be known and its parameters

are estimated by means of the calibration principle.

Rota and Laitila (2015) combine these calibration schemes and construct an alterna-

tive estimator of the total Y of a survey variable y by means of two-step estimation in

the presence of sample- and population-level auxiliary information under the assumption

of a known functional form of the response mechanism. In line with this setup, this paper

contributes by deriving an approximate variance expression and suggesting a variance es-

timator for this alternative two-step estimator. Moreover, we demonstrate that the use of

sample-level auxiliary information generally yields more efficient two-step estimator than

does the use of population-level auxiliary information. Simulation studies are carried out

to illustrate the properties of the two-step estimator and its variance.

The rest of the paper is organized as follows: section 2 introduces calibration theory;

the two-step estimator is presented in section 3 and the variance and variance estimator

in section 4; in section 5, we provide arguments justifying the use of sample auxiliary

information in the first step of estimation; the simulation study is presented in section 6

and the results are discussed in the final section.

2 Introduction of calibration estimation

2.1 Notations

Sample s of n elements is drawn from population U = {1, 2, ..., k, ..., N} of size N using a

probability sampling design, p(s), that yields the first- and second-order inclusion prob-

abilities πk = Pr(k ∈ s) > 0 and πkl = Pr(k, l ∈ s) > 0, respectively, and πkk = πk for all

k, l ∈ U . Let r ⊂ s denote the response set. Units in the sample respond independently

of each other with probability qk = Pr(k ∈ r |k ∈ s) > 0. Assume y to be the survey

variable of which we are interested in estimating its total Y =
∑

kεU yk using auxiliary

information defined as:

(a) xpk = (xp1k, x
p
2k, ..., x

p
Jk)

t, a J-dimensional vector of known values for all elements k

in the response set r; for each j = 1, ..., J , T pxj =
∑

kεU x
p
jk is known. This implies that

T px = (T px1, T
p
x2, ..., T

p
xJ)t is also known.

(b) xsk = (xs1k, x
s
2k, ..., x

s
Lk)

t, an L-dimensional vector of known values for all elements k

in the sample set, s. For each l = 1, ..., L, we can estimate t̂sxl =
∑

kεs dkx
s
lk and compose

the vector t̂sx =
(
t̂sx1, t̂

s
x2, ..., t̂

s
xL

)t
.
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Unless otherwise stated, the expected value EpEq(A), is written simply as E(A).

2.2 Calibration estimators

Calibration estimators are a class of weighted estimators of the form Ŷcal =
∑

kεr wkyk,

with weights wk satisfying the calibration constraint
∑

kεr wkxk = X, where xk stands for

xpk, xsk, or xk =
(
(xpk)

t , (xsk)
t)t and X corresponds to their respective totals, i.e., T px , t̂sx, or(

(T px )t ,
(
t̂sx
)t)t

. Papers by Deville and Särndal (1992) and Deville et al. (1993), bench-

marks in calibration estimation theory, approach calibration in the context of full-sample

responses and their main purpose was the reduction of sampling errors. The approach

was then extended to cases of samples with nonresponse in order to reduce nonresponse

bias (e.g., Singh et al. 1995; Niyonsenga 1997; Lundström and Särndal 1999; Kreuter

and Olson 2011).

The minimum-distance approach to deriving calibration weights aims to determine cal-

ibrated weights as close as possible to the design weights by means of a distance func-

tion, D(w, d). Deville and Särndal (1992) required the distance D to be positive and

to be the convex function of its arguments, with D(0) = dD(0) = 1, where d stands

for the first derivative. Minimizing D, subject to the above calibration constraint and

using a Lagrange function, leads to calibrated weights of the form wk = dkF (·), where

F−1(a) = dD(a) and dk = 1/πk. When D is chosen to be

D(w, d) =
∑
kεr

[
d−2k (wk − dk)

]2
/2, (1)

the calibrated weights are given by wk = dk + dkg
txk, which are linear in the coefficient

vector gt = (X−
∑

kεr dkxk)
t (
∑

kεr dkxkx
t
k)
−1

. The resulting estimator of Y , commonly

termed a linear calibration estimator, is given by

ŶLC =
∑
kεr

dkyk + gt
∑
kεr

dkxkyk. (2)

Other distance functions will generally produce calibrated weights that are nonlinear in

their coefficients, so deriving the weights may require some iterative procedures. Deville

et al. (1993) provide a set of common distance functions that can be used in generating

calibrated weights.

A direct approach when adjusting for nonresponse is to assume that F (·) is the non-

response adjustment weight and to choose it suitably. The principle is known as re-
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sponse propensity, in which F−1(·) is a probability function. The calibration equation∑
kεr dkF (·)xk = X is employed in estimating the function F (·). Chang and Kott (2008)

use this principle in constructing the estimator Ŷcal, with F (·) = F (ztkg), where the di-

mension of xk is no less than that of zk, and suggest an iterative algorithm for estimating

g.

3 Calibrating in two steps

Särndal and Lundström (2005) suggest a two-step calibration estimator, here denoted by

Ŷ2LC . The first- and second-step weights are constructed according to the principle of

combining population- and sample-level auxiliary information. In the first step, sample-

level information is used to construct intermediate weights, w1k, such that
∑

kεr w1kx
s
k =∑

kεs dkx
s
k. In the second step, weights w1k replace the design weights in the optimiza-

tion problem that led to calibration estimator (2), and the final weights, w2k, satisfy∑
kεr w2kxk = X, where xk = xpk or xk =

(
(xpk)

t , (xsk)
t)t.

The two-step estimator suggested by Rota and Laitila (2015) assumes that the functional

form of the response probability is known and is given by qk = q((xsk)
tg).

In the rest of the paper we use F̂k = F ((xsk)
tĝ), Fk = F ((xsk)

tg), and F ◦k = F ((xsk)
tg◦),

where g is the generic parameter vector, g◦ is the true value of g, ĝ is an estimator of g◦,

and Fk = 1/qk.

Rota and Laitila (2015) define intermediate weights as w1k = dkF̂k, after calculating ĝ in

the first step from the calibration equation
∑

kεr dkFkx
s
k = t̂sx. The second-step weights,

w2k, are derived from the problem min
{w2k}

∑
kεr

(w2k−w1k)
2

2w1k
subject to T px =

∑
kεr w2kx

p
k and

given by w2k = w1kv2k with v2k = 1+gt2x
p
k and gt2 = (T px −

∑
kεr w1kx

p
k)
t (∑

kεr w1kx
p
k (xpk)

t)−1,
assuming that

∑
kεr w1kx

p
k (xpk)

t is invertible. Then, the two-step estimator for the total

Y is given by Ŷ2step =
∑

kεr w2kyk. This estimator can be equivalently written as:

Ŷ2step =
∑
kεr

dkF̂kyk +

(
T px −

∑
kεr

dkF̂kx
p
k

)t

B̂2Fr (3)

where B̂2Fr =
(∑

kεr dkF̂kx
p
k (xpk)

t
)−1∑

kεr dkF̂kx
p
kyk.
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4 The variance and variance estimator

The following assumptions are used in deriving the variance of the two-step estimator:

(i) The sequence of populations and samples increases to infinity, as in Isaki and Fuller

(1982).

(ii) Function F (·g) is monotonic and continuous for all g in G, with finite first deriva-

tives.

(iii) vk = (xpk,x
s
k, yk) is nonrandom and ‖vk‖ <∞.

(iv)
(
B̂2Fr −B2

)
, N−1 (T px −

∑
kεr dkF

◦
kxpk), andN−1

(
t̂sx −

∑
kεr dkF

◦
kxsk
)

are allOp(n
− 1

2 ),

where B2 =
(∑

kεU xpk (xpk)
t)−1∑

kεU xpkyk is the population analogous to B̂2Fr.

(v) N−1
∑

kεr dkx
P
k F◦1k and N−1

∑
kεr dkF

◦
kxpk (xpk)

t are Op(1), where, F1 = dF/dg.

The bias of the two-step estimator is given by E
(
Ŷ2step

)
−Y = E

(
(T px −

∑
r dkF̂kx

p
k)
tB̂2Fr

)
,

which is of order O
(
Nn−

1
2

)
.

Given that ĝ is a solution to
∑

kεr dkFkx
s
k = t̂sx, we proceed as follows:

∑
kεr dkF

◦
kxsk − t̂sx =

∑
kεr dkF̂kx

s
k − t̂sx +

∑
kεr dkx

s
kF̃1k (ĝ − g◦) = Op

(
Nn−

1
2

)
. This

leads to equation (4) below:

(ĝ − g◦) = Γ−1N−1

(∑
kεr

dkF
◦
kxsk − t̂sx

)
+ op

(
n−

1
2

)
= Op

(
n−

1
2

)
(4)

where Γ is the probability limit of N−1
∑

kεr dkx
s
kF̃1k, assumed invertible and F̃1k =

F1k ((xsk)
tg̃), with g̃ being a convex combination of ĝ and g◦.

A first-order Taylor approximation of Ŷ2step at g◦ gives:

Ŷ2step ≈
∑
kεr

dkF
◦
k yk +

(
T px −

∑
kεr

dkF
◦
kxpk

)t

B̂◦2Fr

+
∑
kεr

dkF
◦
1k (ĝ − g◦)

(
yk − (xpk)

tB̂◦2Fr

)
+ λt◦

∑
kεr

dkx
p
kF
◦
1k (ĝ − g◦)

(
yk − (xpk)

t B̂◦2Fr

)
(5)

where λt◦ = N−1 (T px −
∑

kεr dkF
◦
kxpk)

t (N−1∑kεr dkF
◦
kxpk (xpk)

t)−1 is Op(n
− 1

2 ).

Now, as in Estevão and Särndal (2006), we can replace B̂◦2Fr in (5) with
(
B2 + B̂◦2Fr −B2

)
and obtain:
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Ŷ ◦2step =
∑
kεr

dkF
◦
kEk +

(
T Px
)t

B2 +
∑
kεr

dkF
◦
1k (ĝ − g◦)Ek + R (6)

where

R =
∑

kεr dkF
◦
1k (ĝ − g◦)λ

t
◦x

P
k Ek+[(

T Px −
∑

kεr dkF
◦
kxPk

)t −∑kεr dkv
◦
kF
◦
1k (ĝ − g◦) xPk

]t (
B̂◦2Fr −B2

)
, v◦k = 1 + λt◦x

p
k, and

Ek = yk − (xpk)
t B2.

The bias of Ŷ ◦2step is given by E
(
Ŷ ◦2step

)
− Y = E (

∑
kεr dkF

◦
1kEk (ĝ − g◦)) + E (R), in

which the first term on the r.h.s. is O(Nn−
1
2 ) and the second is O(Nn−1). Thus, like the

bias of Ŷ2step, the bias of Ŷ ◦2step is of order O(Nn−
1
2 ). Given this, in equation (6), we drop

the lower-order term R and obtain the approximate expression for the two-step estimator

of Y :

Ŷ •2step =
∑
kεr

dkF
◦
kEk +

∑
kεr

dkF
◦
1k (ĝ − g◦)Ek +

(
T Px
)t

B2. (7)

If we replace (ĝ − g◦) in (7) with the corresponding expression in (4), we get

Ŷ •2step =
∑
kεr

dkF
◦
kEk +

∑
kεr

dkF
◦
1kΓ̃

−1
(∑

kεr

dkF
◦
kxsk − t̂sx

)
Ek +

(
T Px
)t

B2 + op(Nn
− 1

2 ) (8)

where Γ̃
−1

= Γ−1N−1. Let
∑

k,lεA =
∑

kεA

∑
lεA and write (8) as:

Ŷ •2step =
∑
kεs

RkdkF
◦
kEk +

∑
k,lεs

Rk(RlF
◦
l − 1)Akl +

(
T Px
)t

B2 (9)

where Akl = dkdl (x
s
l )
t
(
F◦1kΓ̃

−1)t
Ek, and Rk = 1 if k is a respondent; Rk = 0, otherwise.

The variance of (3) is approximated by the variance of (9) given by:

V ar
(
Ŷ •2step

)
= V ar(T̂ ◦a ) + V ar(T̂ ◦b ) + 2Cov

(
T̂ ◦b , T̂

◦
a

)
. (10)

where T̂ ◦a =
∑

kεsRkdkF
◦
kEk and T̂ ◦b =

∑
k,lεsRk(RlF

◦
l − 1)Akl.

The variances on the r.h.s. of (10) are obtained using result 9.3.1 in Särndal et al. (1992,

p. 348) and given by:

V ar(T̂ ◦a ) =
∑

k 6=lεU(πkldkdl − 1)EkEl +
∑

kεU(dkF
◦
k − 1)E2

k ,

V ar(T̂ ◦b ) =
∑

k 6=l 6=iεU
πkli(F

◦
l −1)

F ◦
kF

◦
i

AklAil +
∑

k 6=lεU
πkl−πkπl
F ◦
kF

◦
l

(F ◦l − 1)(F ◦k − 1)AkkAll+
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∑
k 6=lεU

πkl(F
◦
l −1)

F ◦
k

A2
kl+
∑

k 6=lεU
πkl
F ◦
kF

◦
l

(1− F ◦k )(1− F ◦l )AklAlk+∑
k 6=lεU

πkl
F ◦
kF

◦
l

(1− F ◦l )2AklAll+
∑

kεU

πk(F
◦
k−πk)(F

◦
k−1)

2

(F ◦
k )

2 A2
kk,

and

Cov
(
T̂ ◦a , T̂

◦
b

)
=
∑

k 6=lεU
dlπkl
F ◦
k

((F ◦l − 1)Akl + (F ◦k − 1)Akk)El+
∑

kεU(F ◦k − 1)AkkEk−∑
k,lεU

πk(F ◦
k−1)
F ◦
k

AkkEl.

Some details of the derivation of these formulae are given in Appendix. The corresponding

variance estimator is given by:

V̂ ar
(
Ŷ •2step

)
= V̂ ar(T̂a) + V̂ ar(T̂b) + 2Ĉov

(
T̂b, T̂a

)
(11)

where

V̂ ar(T̂a) =
∑

k 6=lεr(dkdl − dkl)ěkěl +
∑

kεr dkF̂k(dkF̂k − 1)e2k,

V̂ ar(T̂b) =
∑

k 6=l 6=iεr F̂l(F̂l − 1)ÂklÂil +
∑

k 6=lεr(1− dklπkπl)(F̂k − 1)(F̂l − 1)ÂkkÂll∑
k 6=lεr F̂l(F̂l − 1)Â2

kl+
∑

k 6=lεr(1− F̂k)(1− F̂l)ÂklÂlk +
∑

k 6=lεr(1− F̂l)2ÂklÂll+∑
kεr

(F̂k−1)2(F̂k−πk)
F̂k

Â2
kk,

and

Ĉov
(
T̂b, T̂a

)
=
∑

k 6=lεr dl

(
(F̂l − 1)Âkl + (F̂k − 1)Âkk

)
ěl+
∑

kεr dk(F̂k − 1)Âkkěk−∑
k,lεr dl(F̂k − 1)Âkkěl,

with T̂a =
∑

kεsRkdkF̂kek, T̂b =
∑

k,lεsRk(RlF̂l − 1)Âkl, Âkl = dkdl (x
s
l )
t
(
F̂1k

ˆ̃Γ−1
)t
ek,

ˆ̃Γ =
∑

kεr dkx
s
kF̂1k, dkl = 1/πkl, ěk = F̂kek, and ek = yk − (xpk)

t B̂2Fr.

Note: As the third-order inclusion probability in variance estimator (11) vanishes, the

triple sum involved is easily factorized into a product of double and single sums, making

the computation easier. Below we provide the factorization of this sum:

∑
k 6=l 6=iεr F̂l(F̂l − 1)ÂklÂil =∑
k 6=lεr dlF̂l(F̂l − 1)Âkl(

ˆ̃Γ−1xsl )
t
∑

iεr di(F̂1i)
tei−

∑
k 6=lεr F̂l(F̂l − 1)

(
Â2
kl + ÂklÂll

)
.

Remark: The last two terms on the r.h.s. of equation (10) represent the contribution of
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the variance of the model parameter estimates to the variance of the two-step estimator.

A question may therefore be raised: Is it worthwhile correcting for the uncertainty in

model parameter estimates when estimating the variance of the two-step estimator?

5 Efficiency gain with calibration at sample level

5.1 Efficiency in estimating the model parameters

The principal goal of the first step is the appropriate estimation of the response model.

This is of particular importance in protecting the target estimates against nonresponse

bias. We can formally illustrate this in the following:

Let

Ĥ(g) =
∑
kεr

dkFkx
s
k − t̂sx (12)

with E
(
Ĥ(g◦)

)
= 0.

From Särndal et al. (1992) result 9.3.1, the covariance of Ĥ(g◦) is given by

E
(
Ĥ(g◦)Ĥ

t(g◦)
)

=
∑
kεU

dk(F
◦
k − 1)xsk(x

s
k)
t. (13)

We assume that the vector of estimating equations, Ĥ(g) = 0, is uniquely solved for

g = ĝ and consider assumptions (i) and (ii) in section 4. From (4) we observe that the

asymptotic variance of the response model coefficients is given by:

Avar
(√

n (ĝ − g◦)
)

=
[
(M (g◦))

−1]Ψ [(M (g◦))
−1] (14)

where M (g◦) = plimn→∞
1
n
dĤ(g◦)
dg

and Ψ = plimn→∞n
−1E

(
Ĥ(g◦)Ĥ

t(g◦)
)

.

Now, suppose that tsx =
∑

U xsk is known. Then (12) is defined as:

ˆ̃H(g) =
∑
kεr

dkFkx
s
k − tsx (15)

with the same properties as before except that

E

(
ˆ̃H(g◦)

ˆ̃H
t

(g◦)

)
=
∑
k,lεU

dkdl(πkl − πkπl)xsk(xsk)t +
∑
kεU

dk(F
◦
k − 1)xsk(x

s
k)
t. (16)

Using similar arguments as those that led to (14), we have that

9



Avar (
√
n (ĝ − g◦)) =

[
(M (g◦))

−1]Φ [(M (g◦))
−1]

+
[
(M (g◦))

−1]Ψ [(M (g◦))
−1] (17)

where Φ and Ψ are the first and second components of plimn→∞n
−1E

(
ˆ̃H(g◦)

ˆ̃H
t

(g◦)

)
,

respectively.

The difference between equations (17) and (14) is M̃ (g◦) =
[
(M (g◦))

−1]Φ [(M (g◦))
−1],

which is a positive definite matrix, unless it is a case of census. This illustrates that (12)

is more appropriate than (15) in the first step of estimation.

5.2 Efficiency in estimating the total Y

Let ˜̂g be the solution to ˆ̃H(g) = 0 and
˜̂
Y •2step = T̂ ◦a + T̂ ◦c (˜̂g − g◦) +

(
T Px
)t

B2 is the

corresponding equation (7) when ĝ is replaced with ˜̂g. Furthermore, if ĝa is uncorrelated

with either T̂ ◦a =
∑

kεr dkF
◦
kEk or T̂ ◦c =

∑
kεr dkF

◦
1kEk, where ĝa stands for ĝ or ˜̂g, T̂ ◦c is

a non-zero vector, and given that E(ĝa − g◦)→ 0 (see equation 4), we have that

V ar
(

˜̂
Y •2step

)
− V ar

(
Ŷ •2step

)
=

V ar
(
T̂ ◦c (˜̂g − g◦)

)
− V ar

(
T̂ ◦c (ĝ − g◦)

)
+ 2Cov

(
T̂ ◦a , T̂

◦
c

)(
E(˜̂g − g◦)− E(ĝ − g◦)

)
=

E
(
T̂ ◦c (˜̂g − g◦)(˜̂g − g◦)

tT̂ ◦tc

)
− E

(
T̂ ◦c (ĝ − g◦)(ĝ − g◦)

tT̂ ◦tc

)
=E

(
T̂ ◦c M̃ (g◦) T̂

◦t
c

)
> 0.

Thus, the efficiency loss of ˜̂g resulting from calibrating with population-level auxiliary

information implies efficiency loss of the two-step estimator (3).

6 Simulations

Two simulation studies were performed to illustrate the properties of the two-step esti-

mator and its variance. In the following, we describe the setup of each simulation study.

6.1 The setup

6.1.1 Study 1

We used data from a real estate survey with 4228 sampled elements of which 1783

were nonrespondents. We selected five variables from the study. A categorical vari-

able that was a stratum indicator in the original six-strata study is denoted by γk =

10



(γ1k, γ2k, γ3k, γ4k, γ5k, γ6k), where γik = 1(kεSi) and Si is the ith stratum. Three numeri-

cal variables denoted x1, x2, and z were transformed into logarithmic scales to reduce the

variability, with the first two being used as benchmarks and the last as a model variable.

Another numerical variable, y, was left untransformed and is the study variable. Here,

the estimation concerned estimating the population total, Y .

We performed a logistic regression fit of R to a constant and z, and the resulting model

was used as the true response probability function. Here, R is a dichotomous variable

of 1/0, i.e., respondent/nonrespondent. The true response probabilities obtained using

the model were then attached to the respective elements and used for Bernoulli trials to

generate the response sets.

The population consists of the 2445 respondents to the survey and samples of sizes 200,

400, and 600 were selected using simple random sampling without replacement. We as-

sume that the chosen response model is correct, that is, the response probabilities are

estimated according to the equation q̂k = 1/ (1 + exp(−ztkĝ)), where zk = (1, zk)
t and ĝ

is obtained from the first step of estimation. The benchmark vector was a combination

of γ and x given by xk = (γtk, xkγ
t
k)
t, while x stands for x1 or x2. The choices of x1, x2,

z, and y were based on their relationships in satisfying the following two cases:

In the first case, the estimator’s performance is analysed when the correlation between

benchmark and model variable is cor(x1, z) = 0.16, while the correlations between the

benchmark/study variable and model variable/study variable are cor(x1, y) = 0.59 and

cor(z, y) = 0.65, respectively. This may be the case when the model and benchmark

variables are obtained from different sources, for example, when model variables are pro-

cess data while the benchmark variables are obtained from administrative registers. The

benchmark variables are selected based on their relationship with the survey variable,

and the model variables are selected with the intention of capturing the response be-

havior. This means that, in general, we do not expect a good relationship between the

model and benchmark variables, although such a relationship is possible. In the second

case, we consider the possibility of having model variables at least moderately correlated

with the benchmark variable and want to observe the impact of this possibility on the

variance of the two-step estimator in relation to the first case. The correlations between

the variables are the following: cor(x2, z) = 0.56, cor(x2, y) = 0.53, and cor(z, y) = 0.65.

Each simulation result was based on 1000 replications. The expected response rate was

approximately 55%. The estimators are evaluated in terms of relative bias (Rel.bias) and

root mean squared error (RMSE).
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6.1.2 Study 2

The previous study was based on real survey data, which are important in empirical

studies because theoretical findings need to be evaluated in real environments. Although

use of real data is important, sometimes freedom to control the environment is desired,

for which simulated data are usually appropriate. Accordingly, this study is based on

simulated population data of size 2445. The estimation setup is as in the former study

except that the variables are generated as follows: x ∼ U (0, 1), z = ρx + ξ, where

ρ is the required correlation between x and z, ξ ∼ U (0, a), and a =
√

1− ρ2. The

study variable is given by y = c1U (0, x) + c2U (0, z), where c1 = c2 = 1 and U is the

uniform distribution. The coefficients c1 and c2 can be varied to change the mean of y

and/or balance or unbalance the correlations ρxy and ρzy between x and y and between

z and y, respectively. The response model is the same as in study 1 except that the

coefficient vector is given by g◦ = (−1.5, 2.0)t. We also created a categorical variable,

γk = (γ1k, γ2k, γ3k, γ4k), where γik = 1(kεSi) and Si is the ith quartile of x, so that the

benchmark vector is given by xk = (γ1k, γ2k, γ3k, γ4k, xkγ1k, xkγ2k, xkγ3k, xkγ4k)
t. In the

first case, we have a correlation between x and z of 0.2, between x and y of 0.49, and

between z and y of 0.53, while in the second case these correlations are 0.7, 0.62, and

0.65, respectively.

6.2 Simulation results

Below we present the simulation results of each of the above studies. The simulations

illustrate the ability of the suggested two-step variance estimator to estimate the variance

of the two-step calibration estimator. The variance estimator of the two-step estimator

(Särndal and Lundström 2005) is used as a benchmark in assessing the performance of

our suggested method. The results also enable us to respond to the question raised in

Remark, that is, whether it is important to correct for the variance in model parameter

estimation when estimating the variance of the two-step estimator. In Tables 1–4 below,

Ŷ stands for Ŷ2LC or Ŷ2step. In each table, Ŷ2step is followed by two results in the column

“Rel.bias of V̂ ar(Ŷ )”, the first of which is the relative bias of the corrected variance

estimator, V̂cor = V̂ ar
(
Ŷ2step

)
, and the second, within parentheses, is the relative bias of

the uncorrected variance estimator, V̂uncor = V̂ ar
(
T̂a

)
.

6.2.1 Results of study 1

Table 1 presents the results of the first simulation study when the correlation between

model and benchmark variables is 0.16, while in Table 2 their correlation is 0.56.
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Table 1: Simulation results of study 1, first case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ in (%) of Ŷ V̂ ar
(
Ŷ
)

in (%) V̂ ar
(
Ŷ
)

coverage rate

200
Ŷ2LC –0.23 194 –25 10627 86

Ŷ2step –0.35 203 03(01) 29915 94

400
Ŷ2LC –0.16 130 –35 5999 68

Ŷ2step –0.17 131 09 (19) 4950 82

600
Ŷ2LC –0.09 103 –17 2082 85

Ŷ2step –0.11 106 06 (15) 4325 84

Table 2: Simulation results of study 1, second case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ in (%) of Ŷ V̂ ar
(
Ŷ
)

in (%) V̂ ar
(
Ŷ
)

coverage rate

200
Ŷ2LC –0.09 188 –32 15184 61

Ŷ2step –0.19 188 –17(–21) 13978 64

400
Ŷ2LC –0.14 123 –36 6011 84

Ŷ2step –0.14 124 –06(–07) 4469 90

600
Ŷ2LC –0.12 99 –19 2550 84

Ŷ2step –0.14 99 –03(–03) 2487 90

Tables 1–2 present the results of the first simulation study, which is based on real survey

data. The results suggest that the two-step estimator Ŷ2step is almost unbiased, having

generally slightly larger Rel.bias and RMSE than the benchmark. With regard to variance

estimators, the results indicate that the Rel.bias of the corrected V̂cor and uncorrected

V̂uncor variance estimators are low compared with the benchmark. In Table 1, the biases

of these variance estimators are positive while those of the benchmark variance estimator

are negative. In Table 2, all variance estimators have negative biases. In Table 1, the

RMSE of V̂cor is larger than that of the benchmark, except when the sample size (n) is

400, while in Table 2, V̂cor has smaller RMSE values for all sample sizes. The tables also

show that V̂cor has a smaller absolute relative bias than does V̂uncor, except in Table 1 for

n = 200 and in Table 2 for n = 600. In Table 2, the Rel.bias values of V̂cor and V̂uncor are

decreasing in absolute values and converging to the same level. These properties are not

observed in Table 1, however. The estimated confidence interval coverage rates (CICR)

are generally larger for Ŷ2step than the benchmark, increasing for both estimators with

increasing sample size, but are less than 95%.

6.2.2 Results of study 2

The results of the second simulation study are shown in Tables 3–4.
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Table 3: Simulation results of study 2, first case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ in (%) of Ŷ V̂ ar
(
Ŷ
)

in (%) V̂ ar
(
Ŷ
)

coverage rate

200
Ŷ2LC –0.22 70 –17 1090 52

Ŷ2step –0.67 71 –09(–04) 1307 67

400
Ŷ2LC –0.15 50 –18 529 87

Ŷ2step –0.30 50 –14 (–01) 474 85

600
Ŷ2LC –0.08 39 –15 261 88

Ŷ2step –0.15 40 –19 (–24) 342 88

Table 4: Simulation results of study 2, second case
Sample Estimator Rel.bias RMSE Rel.bias of RMSE of CI

size of Y of Ŷ in (%) of Ŷ V̂ ar
(
Ŷ
)

in (%) V̂ ar
(
Ŷ
)

coverage rate

200
Ŷ2LC –0.04 83 –25 2045 80

Ŷ2step –0.33 84 –09 (–17) 5317 81

400
Ŷ2LC –0.13 63 –33 1338 82

Ŷ2step –0.27 59 –07 (–14) 909 88

600
Ŷ2LC 0.13 46 –19 442 91

Ŷ2step 0.07 47 –06(–09) 450 91

Tables 3–4 present the results of the second simulation study based on simulated data.

As in the former study, the two-step estimator Ŷ2step is almost unbiased but presenting

slightly larger Rel.bias (except in Table 4 when n = 400) than the benchmark estimator.

Regarding the variance estimators, Table 4 also shows that the Rel.bias of the corrected

V̂cor and uncorrected V̂uncor variance estimators are low compared with the benchmark and

tend to decrease in absolute value with increasing sample size. Furthermore, the relative

biases of these variance estimators tend to converge to the same level. Table 4 also shows

that the RMSE is larger for V̂cor than for V̂ ar(Ŷ2LC), except when n = 400, which is the

same behavior in Table 3. The estimated coverage rates for Ŷ2step are generally not less

than the benchmark and, for both estimators, tend to increase with increasing sample

size, but remain less than 95%.

7 Discussion

Above we present the illustrative results of the two-step calibration estimator Ŷ2step. The

results are based on two simulation setups, one based on data from a real estate survey,

the other based on simulated data. The results given in Tables 1–4 indicate that Ŷ2step

have very low bias levels, however, tends to have a slightly larger bias than Ŷ2LC , except

when n = 600 in Table 4, in which case the sign of the bias is positive. The slightly
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large bias for Ŷ2step than Ŷ2LC may be because xsk is reused in the second step of the Ŷ2LC

estimator, while the estimator Ŷ2step, uses it only in the first step. One alternative is to

reuse xsk in the second step of estimation, which we expect to further reduce the bias of

Ŷ2step. The RMSE values for Ŷ2LC and Ŷ2step are generally comparable. To assess the role

of the auxiliary information used here, we have also calculated the expansion estimator,

ŶExp (Särndal and Lundström 2005, p. 68), obtaining relative biases of –7% and –8%

for the first and second studies, respectively. These relative biases are much larger than

those obtained with the two-step estimators under consideration.

In virtually all tables, the Rel.bias of V̂cor is smaller in absolute value than the benchmark,

except in Table 3 when n = 600 . The Rel.bias of V̂cor is positive in Table 1 and nega-

tive in others, this inconsistency is associated with some very small probability estimates

producing very large weights that influence the estimated entities. When the benchmark

is at least moderately correlated with the model variable, the Rel.bias of V̂cor tends to

decrease in absolute value with increasing sample size. The properties mentioned above

are no longer observed when the correlation between benchmark and model variables is

low. Another indicator of the performance of the suggested variance is the estimated

confidence interval coverage rate, which suggests that our proposed variance estimator

works well, as it generally leads to a coverage rate of the point estimator Ŷ2step that is no

less than that of the benchmark point estimator. In Tables 2 and 4, the coverage rates

increase with decreasing Rel.bias of V̂cor.

Regarding the question in the Remark, the results indicate that, with correlated model

and benchmark variables, it is worth correcting for the uncertainty in model parameter

estimation for small sample sizes in which V̂cor tends to have a smaller bias than does

V̂uncor; for large samples this correction is less important, as we expect ĝ to be close to

g◦. With low correlation between model and benchmark variables, it is not clear whether

or not this correction is important, as we can see in Tables 1 and 3 that some situations

favour V̂cor while others favour V̂uncor.

The overal conclusion is that inferences will be reasonably valid when good benchmarks

are available and not too small samples are considered.
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Appendix

From (9)we have that:

V ar
(
Ŷ •2step

)
= V ar(T̂ ◦a ) + V ar(T̂ ◦b ) + 2Cov(T̂ ◦b , T̂

◦
a ), where

T̂ ◦a =
∑

kεsRkdkF
◦
kEk, T̂

◦
b =

∑
k,lεsRk(1−RlF

◦
l −1)Akl, andAkl = dkdl (x

s
l )
t (F◦1kΓ−1)tEk.

From Särndal et al. (1999), V ar(T̂w) = EpVq(T̂w) + VpEq(T̂w) with T̂w standing for T̂ ◦a or

T̂ ◦b .

Then,

V ar(T̂ ◦b ) = VpEq(
∑

k,lεsRk(RlF
◦
l − 1)Akl) + EpVq(

∑
k,lεsRk(RlF

◦
l − 1)Akl)

where

VpEq(
∑

k,lεsRk(RlF
◦
l −1)Akl) = Vp(

∑
kεs

1−F ◦
k

F ◦
k
Akk) =

∑
k 6=lεU

πkl−πkπl
F ◦
kF

◦
l

(F ◦k−1)(F ◦l −1)AkkAll+∑
kεU

πk(1−πk)(F ◦
k−1)

2

(F ◦
k )

2 A2
kk

and

EpVq(
∑

k,lεsRk(RlF
◦
l − 1)Akl) =Epq

∑
k,l,i,jεU (Mkl − Eq(Mkl)) (Mij − Eq(Mij))

with Mab = IaIbRa(RbF
◦
b − 1)Aab. This leads to

EpVq(
∑

k,lεsRk(RlF
◦
l − 1)Akl) = S1 + S2 + S3 + 2S4 + S5,

S1 =
∑

k 6=l 6=iεU
πkli
F ◦
kF

◦
i

(F ◦l − 1)AklAil, S2 =
∑

k 6=lεU
πkl
F ◦
k

(F ◦l − 1)A2
kl,

S3 =
∑

k 6=lεU
πkl
F ◦
kF

◦
l

(1 − F ◦k )(1 − F ◦l )AklAlk, S4 =
∑

k 6=lεU
πkl
F ◦
kF

◦
l

(1 − F ◦l )2AklAll, and S5 =∑
kεU

πk
(F ◦

k )
2 (F ◦k − 1)3A2

kk.

Where S1 is for l = j, S2 for l = j and k = i, S3 for k = j and l = i, S4 for l = i = j and

k = l = j, S5 for k = l = i = j, and zero for other index combinations.

Cov(T̂ ◦b , T̂
◦
a ) =

Epq(
∑

k,lεsRk(RlF
◦
l − 1)Akl

∑
iεsRidiF

◦
i Ei)− Epq(

∑
k,lεsRk(RlF

◦
l − 1)Akl)

∑
iεU Ei =

Epq(
∑

k,l,iεU diIkIlIiRkRlRiF
◦
l F
◦
i AklEi − diIkIlIiRkRiF

◦
i AklEi)−

Epq(
∑

k,lεU IkIlRkAkl(RlF
◦
l − 1)

∑
iεU Ei)= C1 + C2 + C3.

where C1 =
∑

k 6=iεU
diπki(F

◦
k−1)

F ◦
k

AkkEi −
∑

kεU

πk(1−F ◦
k )

F ◦
k

Akk
∑

iεU Ei when k = l;

C2 =
∑

k 6=lεU
dlπkl(F

◦
l −1)

F ◦
k

AklEl, when l = i; and C3 =
∑

kεU(F ◦k − 1)AkkEk when k = l = i.

Note that
∑

iεU Ei = Epq(T̂
◦
a ).
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