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Design-based prediction by an example

Fixed population U and associated values yU “ tyi : i P Uu

Element i1 i2 i3 i4

Value yi 1 2 3 6

SRS: simple random sampling without replacement
Sample s pi1, i2q pi1, i3q pi1, i4q pi2, i3q pi2, i4q pi3, i4q

Sample mean ȳs 1.5 2 3.5 2.5 4 4.5
Out-of-sample mean ȳR 4.5 4 2.5 3.5 2 1.5

Unknown yk for k R s
y3 “ 3 y2 “ 2 y2 “ 2 y1 “ 1 y1 “ 1 y1 “ 1
y4 “ 6 y4 “ 6 y3 “ 3 y4 “ 6 y3 “ 3 y2 “ 2

pyk ´ ŷkq
2

“ pyk ´ ȳsq
2 2.25 0 2.25 2.25 9 12.25

20.25 16 0.25 12.25 1 6.25
D̄R “

1
2

∞
kRs

pyk ´ ȳsq
2 11.25 8 1.25 7.25 5 9.25

Random R “ Uzs, ȳR or tyk : k R su as sample s varies
Eppȳs ´ ȳRq “ 0, i.e. unbiased prediction w.r.t. ppsq ”

1
6

EppD̄Rq “ 7 “ MSE of unit-level prediction by ȳs

Design-based prediction w.r.t. ppsq is well-defined,
but di�ers completely to model-based prediction.
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Descriptive inference for finite populations

Throughout the 20th century, design-based inference by
probability sampling from finite-populations has been the
standard approach to O�cial Statistics, insofar as the
target parameters are descriptive, observable summaries
of a given finite population, such as the population total,
mean or quantiles of some specific values associated with
the given population units.
Such kind of inference is called descriptive (Smith, 1983)
or predictive (Geisser, 1993), which can be contrasted
to analytic inference of theoretical, unobservable targets
such as the life expectancy (of a hypothetical cohort) or a
model that can help to understand the given population.

Fundamental epistemological distinction between
predictive and analytic inference
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Design-based model-assisted inference

Design-based inference can be made more e�cient using
known auxiliary population totals.
• Calibration estimation (Deville and Särndal, 1992)
• Empirical likelihood methods (Hartley and Rao, 1968; Rao and

Wu, 2010; Berger and De La Riva Torres, 2016)

In particular, by the model-assisted approach, a model is
explicitly formulated but inference remains design-based,
whether or not the adopted estimator is optimal under
the assumed assisting model.
• Generalised regression estimator (GREG) using linear regression

models (Särndal et al, 1992)

• Model-calibrated estimators using generalised linear or non-linear
models (e.g. Wu and Sitter, 2001)

• A unified “construction recipe” (Breidt and Opsomer, 2017), i.e.
model prediction corrected by observed sample residuals

Such model-assisted inference can be design consistent,
asymptotically as N, n Ñ 8...
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Finite-population Neyman-Fisher consistency

As Smith (1994) points out, the “asymptotic notion of
consistency” is not immediately applicable to the given
population as “a real entity”, such that finite-population
Fisher consistent estimators may be desirable.

For a given population and a fixed sample size, if tp1q, ..., tpkq

are unbiased estimators of the population totals T p1q, ..., T pkq,
then gptp1q, ..., tpkqq is Fisher consistent for gpT p1q, ..., T pkqq, in
the sense that replacing tpjq by T pjq would yield the true target
population parameter (Fisher 1956).

Neyman (1934) calls an interval estimator “consistent”
if it achieves the nominal level of coverage for the given
finite population and the prescribed method of sampling.

Finite-population Neyman-Fisher consistency requires
design-unbiasedness for any given population target.
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Model-assisted design-unbiased estimation

Design-unbiased ratio or linear regression estimators have
been proposed by Hartley and Ross (1954) and Mickey
(1959), which achieve the “component-wise unbiasedness”
required for finite-population Neyman-Fisher consistency.

Sanguiao-Sande and Zhang (2021) develop a technique
for design-unbiased model-assisted estimation, called

subsampling Rao-Blackwellisation (SRB),
which allows for any assisting Machine Learning (ML)
models or algorithms that are increasingly common.
The SRB approach combines three classic ideas:
• model-assisted estimation in survey sampling,
• cross-validation for error estimation in ML,
• Rao-Blackwell Theorem (Rao, 1945; Blackwell, 1947)

for e�ciency improvement.
Now, use SRB for design-based predictive inference...
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Finite-population prediction estimator

Fixed features xU “ txi : i P Uu in addition to pU, yUq

Given any s Ä U , let µpx, sq be a predictor for any out-of-
sample unit that is associated with feature vector x.
The prediction estimator of Y “

∞
iPU

yi is given as

Ŷ “

ÿ

iPs

yi `

ÿ

jPUzs

µpxj, sq (1)

where µpx, sq is the individual predictor of y given x.

We treat yU as constants but retain “predictor”;
µpx, sq can be given by any ML model or algorithm.

Eq. (1) includes the Horovitz-Thompson (HT) estimator,
given xi “ ⇡iN{n, ⇡i “ Prpi P sq and n “ |s|, where

µHT pxj, sq “ xj�s `
1

N ´ n

ÿ

iPs

pxi�s ´ yiq

and �s “
1
n

∞
iPs

yi{xi, using p⇡i, Nq as auxiliary information.
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Sampling-subsampling pq-design

Training-test sample split : s1 Y s2 “ s and s1 X s2 “ H by
subsampling design:

s1 „ qps1 | sq, s2 “ szs1

Typically, s1 by SRS from s with or without replacement,
or T -fold cross-validation where n2{n “ 1{T , s1 “ szs2

E.g. let s “ t1, 2, ..., 10u, by SRSWOR of s1 with size n1 “ 6,

s1 “ t1, 3, 4, 6, 8, 10u Y s2 “ t2, 5, 7, 9u

s1 “ t2, 5, 6, 8, 9, 10u Y s2 “ t1, 3, 4, 7u ...

Sanguiao-Sande and Zhang (2021) refer to the sampling-
subsampling design of ps, s1q as the pq-design, denote by

fps1, sq “ qps1 | sqppsq “ fps | s1qfps1q (2)

Given any s1 „ fps1q, s2 can be regarded as probability
sample from Uzs1, where s1 Y s2 “ s „ fps | s1q, and

⇡2i “ Prpi P s2 | s1q “

ÿ

sQi,iRs1

fps | s1q (3)
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Subsample-trained prediction estimator

Let µpx, s1q be the predictor trained on tpyi, xiq : i P s1u, in
the same way as µpx, sq is trained on tpyi, xiq : i P su.
The subsample-trained prediction estimator of Y is

Ŷ
˚

1 “

ÿ

iPs

yi`

ÿ

jPUzs

µpxj, s1q “

ÿ

iPs

yi`

´ ÿ

jPUzs1

µpxj, s1q´

ÿ

jPs2

µpxj, s1q

¯

such that

Y “

ÿ

iPs

yi `

ÿ

jRs

yj “

ÿ

iPs

yi `

´ ÿ

jPUzs1

yj ´

ÿ

jPs2

yj

¯

B “ Ŷ
˚

1 ´ Y “

ÿ

jPUzs1

tµpxj, s1q ´ yju ´

ÿ

jPs2

tµpxj, s1q ´ yju “ B1 ´ Bps2q

Conditional on s1, both B and Bps2q vary with s2 Ä Uzs1

according to s „ fps | s1q, but B1 is fixed, as well as

ej “ µpxj, s1q ´ yj for any j P Uzs1 “ s2 Y pUzsq.

Unbiased EstB̂1 ´ Bps2q ´ B | s1u “ 0 with B̂1 “
∞

iPs2

ei

⇡2i
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Subsampling Rao-Blackwellisation (SRB)

Applying RB to Ŷ
˚

1 yields the SRB prediction estimator

Ŷ
RB

“

ÿ

iPs

yi `

ÿ

jPUzs

µ̄pxj, sq (4)

where
µ̄pxj, sq “ Eqtµpxj, s1q| su (5)

NB. distinguish µ̄px, sq from µpx, sq trained once on s

NB. unordered s as minimal su�cient statistic for ppsq

BiaspŶ
RB

q “ EppŶ
RB

q ´ Y “ EpqpŶ
˚

1 q ´ Y “ EpqpBq

RB
ùñ B̂

RB
“ EqpB̂ | sq

is p-unbiased for BiaspŶ
RB

q, i.e.
EppB̂

RB
q “ EptEqpB̂ | squ “ Es1tEspB̂ | s1qu “ Es1tEspB | s1qu “ EpqpBq

Design-unbiased estimator B̂
RB of BiaspŶ

RB
q
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Mean squared error of total prediction

Theorem 1. For any given µp¨q, an unbiased estimator of
the MSE of the SRB prediction estimator Ŷ RB, over s „ ppsq,
is given by

mseRB
“ EqtB̂

2
´ V̂spB̂ | s1q ` V̂stBps2q | s1u | su ´ VqpŶ

˚

1 | sq

where B̂ “
∞

jPs2
p⇡

´1
2j ´ 1qtµpxj, s1q ´ yju, and V̂spB̂ | s1q is

unbiased for

VspB̂ | s1q “

ÿ

iRs1

ÿ

jRs1

p⇡2ij ´ ⇡2i⇡2jqp
1

⇡2i
´ 1qp

1

⇡2j
´ 1qe1ie1j

where ⇡2ij “ Prpi, j P s2 | s1q, and V̂stBps2q | s1u is unbiased
for

VstBps2q | s1u “

ÿ

iRs1

ÿ

jRs1

p⇡2ij ´ ⇡2i⇡2jqe1ie1j .

Design-unbiased estimator mseRB of MSEpŶ
RB

q

NB. MSEpŶ
RB

q « MSEpŶ q using µ̄px, sq or µpx, sq
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An illustration

Generate and fix a population of size N “ 1000 by

yi “ �1x1i ` �2x2i ` ✏i

x1i
IID
„ LogNp1, 1q, x2i

IID
„ Poissonp5q, ✏i

IID
„ Np0, S2

x1
{4q

Obtain s by SRSWOR, where n “ 100. Let µpx1, sq “ a` x1b

be misspecified, on x1 only, where pa, bq are sample OLS.

MSE estimation from 250 samples, µpx, sq for Ŷ and Monte
Carlo µ̄px, sq for Ŷ RB with T “ 103, (training, test) set of size
pn1, n2q, RE against variance of HT-estimator.

pn1, n2q MSEpŶ q REpŶ q MSEpŶ
RB

q REpŶ
RB

q CVpÇmseRB
q

(98, 2) 386532.7 0.44 386632.4 0.44 3.48
(80, 20) 363613.9 0.41 363441.5 0.41 0.31
(70, 30) 362673.0 0.41 357146.9 0.41 0.21

NB. Bias of Ŷ and Ŷ
RB negligible, details omitted here

NB. n2 “ 20 or 30 su�ces for ÇmseRB in practice; exact RB
with n2 “ 2 has CVpmseRB

q “ 0.14 and CVpV̂HT q “ 0.32
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Summary so far

We obtain design-unbiased bias and MSE estimation of
any ML-based SRB-prediction estimator (1) using µ̄px, sq.

This allows one to use any ML models or algorithms that
may compare favourably to the traditional estimators by
calibration, model-assisted GREG, etc.

Our inference of the design-based bias or MSE is finite-
population Neyman-Fisher consistent, without the need
to resort to (possibly di�cult) asymptotic justifications.

It is simple to use the SRB predictor µ̄px, sq instead of the
once-trained predictor µpx, sq, as long as tuning or error
estimation by cross-validation is needed.

Next, design-based inference at unit/individual level...
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Risk of individual prediction

Regardless how µpx, sq is obtained from tpyi, xiq : i P su,
by whichever model or algorithm, its total squared error
(TSE) over R “ Uzs is given by

Dps;µq “

ÿ

iPR

tµpxi, sq ´ yiu
2

For design-based individual-level predictive inference, we
define the risk of µpx, sq to be the expectation of Dps;µq

over repeated sampling of s „ ppsq, denoted by

⌧pµq “ Ep tDps;µqu (6)

NB. only s is random in (6), while yU and xU are fixed
NB. MSEpŶ q for total Y is Ep of squared total error (STE)

SRB provides a unified approach to both STE and TSE,
by appropriate averaging of subsample-trained µpx, s1q.
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Subsample-trained µpx, s1q

Under the pq-design, s1 Y s2 “ s, let

DRps1;µq “

ÿ

iPR

eipµ, s1q
2 and eipµ, s1q “ µpxi, s1q ´ yi

be the TSE of µpx, s1q over R “ Uzs. Let

Aps2q “

ÿ

iPs2

eipµ, s1q
2

“

ÿ

iPUzs1

eipµ, s1q
2

´ DRps1;µq

Given s1, both A2 and DRps1;µq vary with s2, but their sum
A1 “

∞
iPUzs1

eipµ, s1q
2 is fixed. The predictor

D̂Rps1;µq “ Â1 ´ Aps2q “

ÿ

iPs2

⇡
´1
2i eipµ, s1q

2
´ Aps2q

is unbiased for DRps1;µq conditional on s1,

EstD̂Rps1;µq ´ DRps1;µq | s1u “ 0.

NB. similarly to EstB̂1 ´ Bps2q ´ B | s1u “ 0 before
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Risk of SRB-predictor

Theorem 2. For any given µp¨q, aipµ, s1q “ µpx, s1q ´ µ̄px, sq,
an unbiased estimator of the risk ⌧pµ̄q of the corresponding
SRB-predictor µ̄px, sq, over s „ ppsq, is given by

D̂ps; µ̄q “ Eq

´ ÿ

iPs2

p⇡
´1
2i ´ 1q

 
eipµ, s1q

2
´ aipµ, s1q

2
(

| s

¯
.

When exact SRB is infeasible, one can use the Monte
Caro SRB predictor based on T subsamples

#
µ̃pxi, sq “ T

´1
∞

T

t“1 µpxi, s
ptq

1 q if i P R

µ̊pxi, sq “ T
´1
i

∞
T

t“1 I
`
i R s

ptq

1

˘
µpxi, s

ptq

1 q if i P s

where Ti “
∞

T

t“1 I
`
i R s

ptq

1

˘
, and the risk estimator

D̃ps; µ̄q “
1

T

Tÿ

t“1

ÿ

iPs
ptq

2

`
⇡

´1
2i ´ 1

˘
teipµ, s

ptq

1 q
2

´ aipµ, s
ptq

1 q
2
u

aipµ, s
ptq

1 q “ µpxi, s
ptq

1 q ´ µ̊pxi, sq ë
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Illustration

Generate ad hoc 200 sets of yU , each of size N “ 2000,
where half of them by M1 and half by M2,

(M1) y “ x1 ` 0.5x2 ` ✏, ✏ „

$
’’&

’’%

Np0, 1q if z “ 1 ô x2 † 3

Np´2, 1q if z “ 2 ô 3 § x2 † 7

Np2, 1q if z “ 3 ô x2 • 7

(M2) y “ 0.5 ` 1.5x1 ` x2 ` ✏, ✏ „ �
2
1 ` Np0, 0.25q

x1
IID
„ Np0, 1q x2

IID
„ Poissonp5q

From each population, draw sample s by
• SRS of size n “ 200

• Poisson Sampling, with ⇡
´1
i

91 ` 1{expp↵ ` 0.5yiq and
∞

iPU
⇡i “ n,

where ↵ P t1,´0.1,´1u leads to coe�cient of variation of ⇡i over U ,
denoted by cv⇡, to be about 15%, 30% and 45%, respectively.

Models
• linear regression (LR)
• random forest (RF)
• support vector machine (SVM)
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Illustration

MSE and estimates given LR, RF or SVM over 200 simulations.
PS, Poisson Sampling; CrV-based, cross-validation-based.

SRSWOR PS (cv⇡=15%)
MSE D{|R| LR RF SVM LR RF SVM

Average, true 8.399 9.013 9.272 8.566 9.225 9.671
Design, proposed 8.409 9.073 9.326 8.416 9.182 9.615

Model, CrV 8.457 9.481 9.862 8.014 9.214 9.405
Model, residual 8.162 5.105 7.706 7.766 4.945 7.578

PS (cv⇡=30%) PS (cv⇡=45%)
MSE D{|R| LR RF SVM LR RF SVM

Average, true 8.957 9.726 10.451 9.866 10.884 11.573
Design, proposed 8.711 9.559 10.196 9.288 10.364 10.974

Model, CrV 7.624 8.880 8.799 6.992 8.262 7.933
Model, residual 7.369 4.731 7.330 6.776 4.367 6.758

CrV-based mse “
1
T

∞
T

t“1
1
n2

∞
iPs

ptq
2

tµpxi, s
ptq

1 q ´ yiu
2 and

residual-based mse “
1
n

∞
iPs

pµ̃pxi, sq ´ yiq
2 under IID error model

NB. IID-model CrV-based MSE is biased under Poisson Sampling
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Spanish Structural Business Survey 2020

Stratified SRS, take-some stratum sample size ° 2
No. strata “ 9 681, |U | “ 2 018 561, |s| “ 80 280
Reduced sample: |s

˚
| “ 40 514, stratum sample size ° 2

Models:
• LR, x “ admin turnover, operating income (by model selection)
• RF, additional features 1st-digit NACE, no. employees

q-design: SRS, 80-20 split for LR, 50-50 for RF
Results pˆ109q, T “ 105, reduced sample size if unspecified

Estimator, model Ŷ Bias MSE RErr MC error
HT-estimator (full sample size) 258 0 94 0.04 -
HT-estimator 252 0 151 0.05 -
SRB-estimator, LR 229 0 122 0.05 1
SRB-estimator, RF 234 0 107 0.04 2
SRB-prediction estimator, LR 227 -2 50 0.03 3
SRB-prediction estimator, RF 238 4 27 0.02 5

SRB-estimator, design-unbiased (Sanguiao-Sande & Zhang, 2021)
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Final remarks

Design-based predictive inference from finite-population
probability sampling is developed for the first time.
In addition to population-level estimation, it provides a
theoretical basis for creating census-like population data
or statistical registers for descriptive statistics.
Finite-population design-unbiased estimation of the bias
and MSE of prediction are obtained, without the need
of asymptotic justifications, given arbitrary ML model or
algorithm (either existing or yet to be invented).
Finally, some obvious, non-exhaustive topics in future:
• Lee et al. (2022) apply ensemble-SRB to missing data

imputation. A unified quasi-randomisation approach?
• Other individual prediction losses, coverage of interval

estimator for population total...
• Better balance between total and individual prediction?
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